

ASPECTOS BIOLÓGICO-PESQUEROS DE ESPECIES CAPTURADAS POR LAS PESQUERÍAS ARTESANALES EN AGUAS MARINAS Y CONTINENTALES DE COLOMBIA DURANTE EL AÑO 2021.

RELACIONES BIOMÉTRICAS E INDICADORES BASADOS EN LONGITUDES

"Acuicultura y Pesca con Responsabilidad"

		i

i

Elaborado por:

Luis Orlando Duarte¹, Arled Martínez², Jorge Rodríguez^{2†}, Diana Tarazona², Brigitte Gil-Manrique², Karina Tejeda², Estefanía Isaza², Javier De la Hoz³ y Luis Manjarrés-Martínez¹

- 1. Grupo de Investigación Evaluación y Ecología Pesquera (GIEEP)
- 2. Contratista
- 3. Grupo de investigación Biodiversidad y Ecología Aplicada (GIBEA)

Programa de Ingeniería Pesquera

Facultad de Ingeniería

Universidad del Magdalena

Cítese como:

Duarte L.O., A. Martínez, J. Rodríguez, D. Tarazona, B. Gil-Manrique, K. Tejeda, E. Isaza, J. De la Hoz y L. Manjarrés–Martínez. 2021. Aspectos biológico-pesqueros de especies capturadas por las pesquerías artesanales en aguas marinas y continentales de Colombia durante el año 2021. Relaciones biométricas e indicadores basados en longitudes. Informe técnico. Autoridad Nacional de Acuicultura y Pesca (AUNAP), Universidad del Magdalena, Santa Marta, 87 p.

TABLA DE CONTENIDO

		PAG.
1	INTRODUCCIÓN	14
2	ASPECTOS METODOLÓGICOS	15
2.1	Distribución geográfica y temporal del esfuerzo de muestreo	15
2.2	Obtención y procesamiento de datos	16
2.3	Relaciones biométricas	17
2.4	Estructura de longitudes e indicadores basados en la longitud de madurez	17
3	RESULTADOS y DISCUSIÓN	19
3.1	LITORAL CARIBE	19
3.1.	1 Relaciones biométricas	19
3.1.2	2 Estructura de longitudes e indicadores basados en la longitud de madurez	19
3.2	LITORAL PACÍFICO	29
3.2.	1 Relaciones biométricas	29
3.2.2	2 Estructura de longitudes e indicadores basados en la longitud de madurez	30
3.3	CUENCA DEL RÍO MAGDALENA	36
3.3.	1 Relaciones biométricas	36
3.3.2	2 Estructura de longitudes e indicadores basados en la longitud de madurez	36
3.4	CUENCA DEL RÍO SINÚ	44
3.4.	1 Relaciones biométricas	44
3.4.2	2 Estructura de longitudes e indicadores basados en la longitud de madurez	44
3.5	ORINOQUÍA	49
3.5.	1 Relaciones biométricas	49
3.5.2	2 Estructura de longitudes e indicadores basados en la longitud de madurez	50
3.6	CUENCA DEL RÍO ATRATO	57
3.6.	1 Relaciones biométricas	57
3.6.2	2 Estructura de longitudes e indicadores basados en la longitud de madurez	57
3.7	AMAZONÍA	63

3.7.1	Relaciones biométricas	.63
3.7.2	2 Estructura de longitudes e indicadores basados en la longitud de madurez	.63
4	REFERENCIAS	69

LISTA DE TABLAS

Tabla 1. Esfuerzo de muestreo biológico-pesquero de peces óseos (número de datos por variable)
efectuado en el año 2021 por el SEPEC. Lt: Longitud total, Le: Longitud estándar, Lh: Longitud
horquilla, PCM: Perímetro corporal máximo Pt: Peso total y Pe: Peso eviscerado
Tabla 2. Esfuerzo de muestreo de frecuencia de longitudes (número de datos) por cuenca o litoral
efectuado por el SEPEC durante el año 202116
Tabla 3. Relaciones longitud-peso de especies monitoreadas en el litoral Caribe durante el año 2021. LT:
Longitud total, LH: Longitud horquilla19
Tabla 4. Análisis de la estructura de longitudes de especies monitoreadas en el litoral Caribe durante el año
2021. Se indican la longitud de madurez ($L_{\rm m}$), la longitud óptima de captura ($L_{\rm opt}$), la longitud de
megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mat}) y L_{mega}
(P_{mega}) , así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}) . LT: Longitud total,
LH: Longitud horquilla21
Tabla 5. Análisis de la estructura de longitudes de especies monitoreadas en el litoral Pacífico durante el
año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{qpt}), la longitud de
megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mat}) y L_{mega} (P_{mega}),
así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}). LT: Longitud total, LH:
Longitud horquilla32
Longitud horquilla
Tabla 6. Relaciones longitud-peso de especies monitoreadas en la cuenca del Magdalena durante el año
Tabla 6. Relaciones longitud-peso de especies monitoreadas en la cuenca del Magdalena durante el año 2021. LE: Longitud estándar

(P_{mega}) , así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}) . LE: Longitud
estándar39
Tabla 8. Relaciones longitud-peso de dos especies monitoreadas en la cuenca del Sinú durante el año 2021
. LE: Longitud estándar44
Tabla 9. Análisis de la estructura de longitudes de especies monitoreadas en cuenca del Sinú durante el año
2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{apl}), la longitud de
megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mal}) y L_{mega} (P_{mega}),
así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopi}). LE: Longitud estándar.
Tabla 10. Relaciones longitud-peso de seis especies monitoreadas en la Orinoquía durante el año 2021.
LE: Longitud estándar, LH: Longitud horquilla49
Tabla 11. Análisis de la estructura de longitudes de especies monitoreadas en la Orinoquía durante el año
2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{apl}), la longitud de
megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mal}) y L_{mega} (P_{mega}),
así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}). LE: Longitud estándar,
LH: Longitud horquilla52
Tabla 12. Análisis de la estructura de longitudes de especies monitoreadas en cuenca del río Atrato durante
el año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{opt}), la longitud
de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mat}) y L_{mega}
(P_{mega}) , así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}) . LE: Longitud
estándar59
Tabla 13. Relaciones longitud-peso de especies monitoreadas en cuenca Amazonía durante el año 2021.
LE: Longitud estándar, LH: Longitud horquilla63
Tabla 14. Análisis de la estructura de longitudes de especies monitoreadas en cuenca del Amazonas durante
el año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{apt}), la longitud
de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mat}) y L_{mega}

(P_{mega}) , así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}) . LE: Longitud		
estándar, LH: Longitud horquilla	66	

LISTA DE FIGURAS

Figura 1. Estructura de longitudes de los individuos de Caranx erysos capturados con red de enmalle fija en
el Caribe durante el año 2021. Las cifras están en longitud horquilla. La línea roja indica la longitud
de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud
óptima de captura. n = 803126
Figura 2. Variación mensual de la longitud media de captura con red de enmalle fija de Caranx crysos en el
Caribe durante el período 2018-2021. Las cifras están en longitud horquilla. La longitud de madurez
se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1166, en 2019 3730,
en 2020 5055 y en 2021 803127
Figura 3. Estructura de longitudes de los individuos de Centropomus undecimales capturados con red de
enmalle fija en el Caribe durante el año 2021. Las cifras están en longitud total. La línea roja indica la
longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de
longitud óptima de captura. n = 474028
Figura 4. Variación mensual de la longitud media de captura con red de enmalle fija de Centropomus
undecimalis en el Caribe durante el período 2018-2021. Las cifras están en longitud total. La longitud
de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1616,
en 2019 5150, en 2020 2873 y en 2021 474028
Figura 5. Estructura de longitudes de los individuos de Mugil incilis capturados con atarraya en el Caribe
durante el año 2021. Las cifras están en longitud total. La línea roja indica la longitud de madurez, la
línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura.
n = 1300929
Figura 6. Variación mensual de la longitud media de captura con atarraya de Mugil incilis en el Caribe
durante el periodo 2018-2021. Las cifras están en longitud total. La longitud de madurez se indica
con la línea segmentada. El número de individuos medidos en 2018 fue 3475, en 2019 8214, en 2020
4559 y en 2021 13009

Figura 7. Estructura de longitudes de los individuos de Cynoscion phoxocephalus capturados con red de
enmalle fija marina en el Pacífico durante el año 2021. Las cifras están en longitud total. La línea roja
indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango
de longitud óptima de captura. n = 2263.
Figura 8. Variación mensual de la longitud media de captura de Cynoscion phoxocephalus con red de enmalle
fija marina en el Pacífico entre 2018 y 2021. Las cifras están en longitud total. La longitud de madurez
se indica con la línea segmentada. n = 2263
Figura 9. Estructura de longitudes de los individuos de Lutjanus guttatus capturados con línea de mano en
el Pacífico durante el año 2021. Las cifras están en longitud total. La línea roja indica la longitud de
madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima
de captura. n = 5639
Figura 10. Variación mensual de la longitud media de captura de Lutjanus guttatus con línea de mano en el
Pacífico entre 2018 y 2021. Las cifras están en longitud total. La longitud de madurez se indica con
la línea segmentada. El número de individuos medidos en 2018 fue 1948, en 2019 112, en 2020 635
y en 2021 5639
Figura 11. Estructura de longitudes de los individuos de Scomberomorus sierra capturados con red de enmalle
de deriva marina en el Pacífico durante el año 2021. Las cifras están en longitud horquilla. La línea
roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde e
rango de longitud óptima de captura. n = 1233935
Figura 12. Variación mensual de la longitud media de captura de Scomberomorus sierra capturados con rec
de enmalle de deriva marina en el Pacífico entre 2018 y 2021. Las cifras están en longitud horquilla
La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018
fue 2400, en 2019 278, en 2020 1633 y en 2021 12339
Figura 13. Estructura de longitudes de los individuos de <i>Pimelodus grosskopfii</i> capturados con atarraya en la
cuença del Maodalena durante el año 2021. Las cifras están en longitud estándar. La línea roia indica

la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango d
longitud óptima de captura. n = 15645.
Figura 14. Estructura de longitudes de los individuos de Prochilodus magdalenae capturados con red de
enmalle fija en la cuenca del Magdalena durante el año 2021. Las cifras están en longitud estándar. I
línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la fran-
verde el rango de longitud óptima de captura. n = 102688
Figura 15. Estructura de longitudes de los individuos de Sorubim cuspicaudus capturados con calandrio en
cuenca del Magdalena durante el año 2021. Las cifras están en longitud estándar. La línea roja indic
la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango d
longitud óptima de captura. n = 28014
Figura 16. Variación mensual de la longitud media de captura de Pimelodus grosskopfii capturados co
atarraya en la cuenca del Magdalena entre 2018 y 2021. Las cifras están en longitud estándar. I
longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 201
fue 14118, en 2019 17440, en 2020 12520 y en 2021 15645
Figura 17. Variación mensual de la longitud media de captura de <i>Prochilodus magdalenae</i> capturados con re
de enmalle fija en la cuenca del Magdalena entre 2018 y 2021. Las cifras están en longitud estánda
La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 201
fue 32994, en 2019 29669, en 2020 43330 y en 2021 102688
Figura 18. Variación mensual de la longitud media de captura de Sorubim cuspicaudus capturados co
calandrio en la cuenca del Magdalena entre 2018 y 2021. Las cifras están en longitud estándar. I
longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 201
fue 2962, en 2019 3499, en 2020 1991 y en 2021 28014
Figura 19. Estructura de longitudes de los individuos de Prochilodus magdalenae capturados con red d
enmalle fija en la cuenca del Sinú durante el año 2021. Las cifras están en longitud estándar. La líne
roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde

Figura 20. Estructura de longitudes de los individuos de Cyphocharax magdalenae capturados con atarraya en
la cuenca del Sinú durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la
longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de
longitud óptima de captura. El número de individuos medidos fue 192746
Figura 21. Variación mensual de la longitud media de captura de Cyphocharax magdalenae capturados con
atarraya en la cuenca del Sinú entre 2018 y 2021. Las cifras están en longitud estándar. La longitud
de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1447,
en 2019 3224, en 2020 1212 y en 2021 192748
Figura 22. Variación mensual de la longitud media de captura de <i>Prochilodus magdalenae</i> capturados con red
de enmalle fija en la cuenca del Sinú entre 2018 y 2021. Las cifras están en longitud estándar. La
longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018
fue 11003, en 2019 6913, en 2020 6140 y en 2021 1272849
Figura 23. Estructura de longitudes de los individuos de Mylossoma albiscopum capturados con línea de mano
en la Orinoquía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la
longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de
longitud óptima de captura. n = 29551
Figura 24. Estructura de longitudes de los individuos de <i>Prochilodus mariae</i> capturados con red de enmalle
fija en la Orinoquía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la
longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de
longitud óptima de captura. n = 228951
Figura 25. Estructura de longitudes de los individuos de Zungaro zungaro capturados con red de enmalle fija
en la Orinoquía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la
longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de
longitud óptima de captura. n = 55854

Figura 26. Variación mensual de la longitud media de captura de Mylossoma albiscopum con línea de mano
en la Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez s
indica con la línea segmentada. El número de individuos medidos en 2018 fue 309, en 2019 280, en
2020 1027 y en 2021 29554
Figura 27. Variación mensual de la longitud media de captura de Prochilodus mariae con atarraya en l
Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indic
con la línea segmentada. El número de individuos medidos 2021 fue 2457.
Figura 28. Variación mensual de la longitud media de captura de Prochilodus mariae con red de enmalle fij
en la Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez s
indica con la línea segmentada. El número de individuos medidos en 2018 fue 198, en 2019 fue 987
en 2020 804 y en 2021 182350
Figura 29. Variación mensual de la longitud media de captura de Zungaro zungaro con Chinchorro en l
Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indic
con la línea segmentada. La longitud de madurez se indica con la línea segmentada. n = 15150
Figura 30. Variación mensual de la longitud media de captura de Zungaro zungaro con red de enmalle fija en
la Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez s
indica con la línea segmentada. El número de individuos medidos en 2018 fue 325, en 2019 965, en
2020 889 y en 2021 4985
Figura 31. Estructura de longitudes de los individuos de Hoplias malabaricus capturados con red de enmalle
fija en la cuenca del río Atrato durante el año 2021. Las cifras están en longitud estándar. La línes
roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde e
rango de longitud óptima de captura. n = 1080158
Figura 32. Estructura de longitudes de los individuos de Megaleporinus muyscorum capturados con red de
enmalle fija en la cuenca del río Atrato durante el año 2021. Las cifras están en longitud estándar. L
línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franje
verde el rango de longitud óptima de captura. n = 363260

Figura 33. Estructura de longitudes de los individuos de Prochilodus magdalenae capturados con red de
enmalle fija en la cuenca del río Atrato durante el año 2021. Las cifras están en longitud estándar. La
línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja
verde el rango de longitud óptima de captura. n = 4083260
Figura 34. Variación mensual de la longitud media de captura de Hoplias malabaricus capturados con red de
enmalle fija en la cuenca del río Atrato entre 2018 y 2021. Las cifras están en longitud estándar. La
longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018
fue 2908, en 2019 11878, en 2020 11081 y en 2021 1080161
Figura 35. Variación mensual de la longitud media de captura de Megaleporinus muyscorum capturados con
red de enmalle fija en la cuenca del río Atrato entre 2018 y 2021. Las cifras están en longitud estándar
La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018
fue 1899, en 2019 6187, en 2020 3608 y en 2021 363262
Figura 36. Variación mensual de la longitud media de captura de Prochilodus magdalenae capturados con red
de enmalle fija en la cuenca del Río Atrato entre 2018 y 2021. Las cifras están en longitud estándar
La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018
fue 9773, en 2019 34131, en 2020 28200 y en 2021 40832
Figura 37. Estructura de longitudes de los individuos de Brycon amazonicus capturados con red de enmalle
fija en la cuenca Amazonía durante el año 2021. Las cifras están en longitud estándar. La línea roja
indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango
de longitud óptima de captura. n = 120664
Figura 38. Estructura de longitudes de los individuos de Prochilodus nigricans capturados con red de enmalle
fija en la cuenca Amazonía durante el año 2021. Las cifras están en longitud estándar. La línea roja
indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango
de longitud óptima de captura. n = 273265

Figura 39. Estructura de longitudes de los individuos de Zungaro zungaro capturados con palangre
calandrio en la cuenca Amazonía durante el año 2021. Las cifras están en longitud estándar. La líne
roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde
rango de longitud óptima de captura. n = 372.
Figura 40. Variación mensual de la longitud media de captura de Brycon amazonicus capturados con red c
enmalle fija en la cuenca Amazonía entre 2018 y 2021. Las cifras están en longitud estándar. I
longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 201
fue 856, en 2019 557, en 2020 874 y en 2021 1206.
Figura 41. Variación mensual de la longitud media de captura de <i>Prochilodus nigricans</i> capturados con atarray
en la cuenca Amazonía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud c
madurez se indica con la línea segmentada. El número de individuos medidos 2021 fue 8096
Figura 42. Variación mensual de la longitud media de captura de Prochilodus nigricans capturados con red c
enmalle fija en la cuenca Amazonía entre 2018 y 2021. Las cifras están en longitud estándar. I
longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 201
fue 1465, en 2019 1613, en 2020 844 y en 2021 2732
Figura 43. Variación mensual de la longitud media de captura de Zungaro zungaro capturados con calandra
en la cuenca Amazonía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud o
madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1465, e
2019 1613, en 2020 844 y en 2021 372

1 INTRODUCCIÓN

Los indicadores basados en la biología de las especies capturadas, así como los análisis de las frecuencias de longitudes y de la madurez, constituyen insumos relevantes para el manejo de las pesquerías de pequeña escala en zonas tropicales (Butterworth et al., 2010). Este tipo de pesquerías se caracterizan por capturar un elevado número de especies y emplear simultánea o alternadamente varios tipos de artes o métodos de pesca y es común que cuenten con datos limitados para determinar adecuadamente el estado de los stocks explotados (Pilling et al., 2008), por lo cual el uso de indicadores simples se constituye en una alternativa para evaluar el estado de los stocks explotados (Cope y Punt, 2009).

El análisis de la estructura de las longitudes de captura es una de las herramientas de evaluación pesquera más utilizadas, dado que refleja el resultado de las interacciones que ocurren entre los procesos biológicos que determinan la dinámica poblacional de las poblaciones (reclutamiento, crecimiento y mortalidad, tanto natural como pesquera) y las capturas (Neumann y Allen, 2007). En efecto, los indicadores simples basados en longitudes se constituyen en puntos de referencia para evaluar el estado de estos recursos a partir de las longitudes de los organismos capturados (Froese y Binohlan, 2000; Froese, 2004).

El presente documento incluye los resultados del análisis basado en las estructuras de longitudes desembarcadas en los dos litorales y en las cuencas continentales monitoreadas, referidas a aquellas especies para las cuales fue factible reunir un número adecuado de datos entre enero y diciembre de 2021, en el marco del contrato interadministrativo 244 de 2021 suscrito entre la AUNAP y la Universidad del Magdalena, específicamente en el contexto del objetivo 5 de dicho contrato, consistente en "Recolectar, sistematizar y analizar información biológico-pesquera (longitud, peso, sexo y estado de madurez sexual) de las especies comerciales determinadas por la AUNAP para cada cuenca, en aquellos puntos de toma de información del contrato que permitan reunir tamaños de muestra representativos a nivel de cada litoral o cuenca".

2 ASPECTOS METODOLÓGICOS

2.1 DISTRIBUCIÓN GEOGRÁFICA Y TEMPORAL DEL ESFUERZO DE MUESTREO

En los sitios definidos por la AUNAP para el monitoreo pesquero de los dos litorales marinos y de las princípiales cuencas epicontinentales del país (descritos en Duarte et al., 2021), se efectuó el muestreo de variables biológicas (longitudes, peso, sexo, madurez) y de frecuencias de longitudes, durante el periodo comprendido entre enero y diciembre de 2021. El esfuerzo de muestreo de variables biológicas y de frecuencia de longitudes de peces óseos por cuenca se discrimina en las Tablas ¡Error! No se encuentra el origen de la referencia. y Tabla 2. Con relación al monitoreo biológico, se observa que la mayor cantidad de datos se registró en la cuenca del río Magdalena (54,5%), seguido de la cuenca del río Sinú (13,2%), del litoral Caribe (12,9%), y de la Orinoquía (9,0%). En el monitoreo de frecuencia de longitudes de peces la mayor cantidad de datos se registró en la cuenca del río Magdalena (35,5%), seguido por el litoral Caribe (29,8%), el litoral Pacífico (17,5%) y la cuenca del Atrato (8,4%).

Tabla 1. Esfuerzo de muestreo biológico-pesquero de peces óseos (número de datos por variable) efectuado en el año 2021 por el SEPEC. Lt: Longitud total, Le: Longitud estándar, Lh: Longitud horquilla, PCM: Perímetro corporal máximo Pt: Peso total y Pe: Peso eviscerado.

Cuenca/Litoral	Lt	Le	Lh	PCM	Pt	Pe	Sexo	Madurez
Amazonía	11304	11649	11000	4546	4735	11638	11650	11650
Atrato	5223	5223	4749	5002	4973	5193	5223	5223
Caribe	24142	24014	23919	6661	18975	10798	24142	24142
Magdalena	90575	90571	74076	67721	70348	89263	90576	90576
Orinoquía	17200	17681	16035	3002	3029	17680	17681	17681
Pacífico	1079	1064	925	1080	1083	1084	1085	1085
Sinú	21547	21545	12807	20751	20752	19966	21547	21547
Total	171070	171747	143511	108763	123895	155622	171904	171904

En lo que respecta al muestreo biológico-pesquero de crustáceos en el Caribe, el balance para camarones fue el siguiente: 927 datos de longitud total, longitud cefalo-torax, longitud cola, peso total, madurez y sexo y 849 datos de peso cola. En cuanto a la langosta, se tuvo la siguiente

relación de datos: 5770 de longitud total, longitud cefalo-torax, longitud cola, peso total y sexo y 5432 de longitud abdomen. Para jaibas el esfuerzo de muestreo permitió el registro de 101 datos de ancho de la base de las espinas laterales (ABEL), peso total y sexo. En el Pacífico, para camarones se registraron 223 datos de longitud cola, sexo y madurez y 222 datos de peso de la cola.

Tabla 2. Esfuerzo de muestreo de frecuencia de longitudes (número de datos) por cuenca o litoral efectuado por el SEPEC durante el año 2021.

Cuenca/Litoral	Número de especies	Número de individuos
Amazonía	82	14989
Atrato	41	61302
Caribe	173	213040
Magdalena	42	257038
Orinoquía	68	30215
Pacífico	134	125800
Sinú	23	20072
Total	563	722456

2.2 OBTENCIÓN Y PROCESAMIENTO DE DATOS

Los datos de longitudes se recolectaron siguiendo las recomendaciones de Agudelo *et al.* (2011). Se registraron las medidas de longitud con precisión de 0.1 cm, utilizando dos tipos de formularios: el formulario de frecuencia de longitudes (Anexo 1) y el formulario de información biológica (Anexo 2). En el primero se registra la longitud total para las especies marinas, la longitud estándar para las especies dulceacuícolas y la longitud horquilla para las especies con la aleta caudal fuertemente ahorquillada. Esta información está orientada al análisis de las estructuras de longitudes y la determinación de la longitud promedio de captura por tipo de arte o método de pesca. En el formato de información biológica se registran los siguientes datos para peces: longitud total (Lt), longitud estándar (Le), longitud horquilla (Lh), peso total, peso eviscerado, sexo y estado gonadal. Para langostas se registraron los siguientes datos: longitud total (Lt), longitud del cefalotórax (Lct), longitud de la cola (Lc), peso de la cola (Pc), ancho del abdomen (Ab), peso total (Pt) y sexo. En jaibas se registró la longitud del caparazón (Lca),

ABEL, peso total (Pt), sexo y estado gonadal. En camarones se registró la longitud total (Lt), longitud del cafalotórax (Lcf), longitud de la cola (Lc), peso total (Pt), peso de la cola (Pc), sexo y estado gonadal. Las medidas de longitud de los formatos de biológicos permiten la estimación de relaciones biométricas y de indicadores biológicos, además de alimentar la base informativa para la determinación de la longitud media de captura y la estructura de longitudes de las principales especies objeto de captura en cada cuenca o litoral. En el presente documento se presentan resultados del monitoreo efectuado durante el año 2021.

2.3 RELACIONES BIOMÉTRICAS

Se determinó la relación longitud-peso (RLP) mediante el ajuste de la ecuación potencial $W = aLt^b$ (Le Cren, 1951; Ricker, 1975), linealizada en la forma Ln W = Ln a + bLt, donde W es el peso total en g, Lt es la longitud total en cm, a es el intercepto (factor de condición o coeficiente de crecimiento inicial) y b es el coeficiente de alometría. Como medida de bondad de ajuste se utilizó el coeficiente de determinación ajustado R^2 y se estimó el intervalo de confianza del 95% para los parámetros a y b. La RLP se determinó para las especies que en cada cuenca tuviesen por lo menos 100 pares de datos de longitud y peso durante el año y que el intervalo de los datos de longitud excediera el 40 % de la longitud máxima registrada de la especie.

2.4 ESTRUCTURA DE LONGITUDES E INDICADORES BASADOS EN LA LONGITUD DE MADUREZ

Para obtener la estructura de longitudes de captura de las especies, la información se agrupó en intervalos de acuerdo con las recomendaciones de Anderson y Neumann (1996), quienes sugieren intervalos de 1 cm para los peces que no superan los 30 cm de longitud total (Lt), intervalos de 2 cm para los peces que llegan a 60 cm e intervalos de 5 cm para los peces que llegan a 150 cm. A partir de la estructura de longitudes de captura de cada tipo de arte o método de pesca se evaluaron los siguientes indicadores (Cope y Punt, 2009):

(a) Pmat, definido como la proporción de peces con longitudes superiores a la longitud de madurez (*L*_m), el cual tiene como punto objetivo que la longitud del 100% de los individuos

- capturados sea superior L_m . Para el análisis se emplearon estimaciones de L_m obtenidas previamente con información registrada en el SEPEC y de la literatura reciente (Anexo 3).
- b) Popt, correspondiente a la proporción de peces dentro de un rango de ± 10% de la longitud óptima de captura (Lopt), teniendo como punto objetivo la captura del 100% de individuos dentro de ese rango. Se considera que la captura de individuos dentro de este rango de longitudes que maximiza la producción de la cohorte. El valor de Lopt se estimó mediante la siguiente ecuación (Froese y Binohlan, 2000): log₁₀Lopt =1.053 * log₁₀(L_m) 0.0565.
- (c) Pmega, representa la proporción de "mega-reproductores" en la captura, con objetivo entre 30% - 40% en la captura cuando no se implementa una estrategia de gestión específica orientada a evitar la captura de ejemplares grandes. Se estima como la proporción de individuos mayores a 1.1*Lopt.

La suma de las tres proporciones obtenidas (Pmat + Popt + Pmega) es una medida (Pobj) propuesta para distinguir los patrones de selectividad y construir un árbol de decisión que permite indicar el estado del stock (Cope y Punt, 2009). Una vez que se establece un patrón de selectividad basado en Pobj, se asocia con la biomasa reproductora del stock (SB) y se evalúa respecto a los puntos de referencia objetivo establecidos, ya sea 40% o 20% de la biomasa reproductora no utilizada o biomasa desovante virgen ($0.4SB_0$ o $0.2SB_0$). Para el análisis se seleccionaron las especies para las cuales se contara con la estimación de la longitud de madurez (L_m) y se hubiese registrado la mayor cantidad de datos de longitud por método de pesca en cada cuenca o litoral a lo largo del periodo de muestreo; regularmente más de 500 datos, pero mínimo 100 datos en algunos casos.

Con base en los datos de longitud individual registrados de 2017 a 2021, para cada mes se calculó la longitud promedio de captura por método de pesca en especies seleccionadas de las cuencas y litorales monitoreados en el país. Se seleccionaron especies con mayor número de datos al mes. Se efectuó la comparación gráfica de la longitud promedio de captura calculada mensualmente con la longitud de madurez para explorar posibles cambios temporales en el impacto relativo de las pesquerías artesanales sobre la estructura de tamaños y el grado de explotación de los recursos pesqueros evaluados.

3 RESULTADOS Y DISCUSIÓN

3.1 LITORAL CARIBE

3.1.1 Relaciones biométricas

Los parámetros de la relación entre la longitud total y el peso total para 11 especies del litoral Caribe fueron estimados con base en la información registrada en el año 2021 (Tabla 3). El coeficiente de determinación ajustado varió entre 0,867 (*Centropomus ensiferus*) y 0,992 (*Centropomus undecimalis*). De acuerdo con el intervalo de confianza del parámetro *b*, dos especies presentaron crecimiento alométrico positivo (b>3) (*Ariopsis canteri* y *Centropomus undecimalis*), mientras que las restantes mostraron un crecimiento alométrico negativo (b<3), excepto *Lutjanus synagris* y *Sciades proops*, que exhibieron crecimiento isométrico. Los resultados anteriores son coherentes con hallazgos de estudios similares. De hecho, en algunos estudios se concluye que *b* varía entre 2,0 y 4,0 (Bagenal, 1978; Tresierra y Culquichicón, 1993), mientras que Pauly (1984) plantea que *b* se ubica en el intervalo de 2,5 a 3,5.

Tabla 3. Relaciones longitud-peso de especies monitoreadas en el litoral Caribe durante el año 2021. LT: Longitud total, LH: Longitud horquilla.

Especie	Tipo	n	R ²	Longitu	ıd (cm)	- a	I.C. 9	5 % a	· b	I.C. 9	5 % b	Priorizada
Especie	long.	11	IX.	Mín.	Máx.	а	Inf.	Sup.	D	Inf.	Sup.	1 HOHZaGa
Ariopsis canteri	LT	225	0,971	19,6	76,3	0,005	0,004	0,007	3,156	3,083	3,228	No
Caranx crysos	LH	2826	0,956	15,3	42,9	0,028	0,026	0,030	2,862	2,839	2,884	Si
Caranx hippos	LH	1062	0,978	13,5	74,2	0,042	0,039	0,045	2,777	2,752	2,802	Si
Centropomus ensiferus	LT	503	0,867	18,6	33,1	0,022	0,016	0,030	2,736	2,642	2,830	No
Centropomus undecimalis	LT	1998	0,992	18,1	107,0	0,003	0,003	0,003	3,262	3,249	3,275	Si
Eugerres plumieri	LT	289	0,945	13,7	33,5	0,016	0,013	0,021	2,940	2,857	3,022	Si
Lutjanus synagris	LT	1398	0,969	12,5	44,3	0,016	0,015	0,018	2,946	2,919	2,974	Si
Mugil incilis	LT	6706	0,917	16,9	48,0	0,014	0,013	0,015	2,828	2,808	2,848	Si
Sciades proops	LT	152	0,966	27,2	120,0	0,010	0,007	0,014	2,961	2,871	3,051	No
Scomberomorus brasiliensis	LH	321	0,954	16,4	74,0	0,018	0,014	0,023	2,800	2,732	2,867	Si
Scomberomorus cavalla	LH	352	0,974	20,5	121,9	0,019	0,016	0,023	2,784	2,735	2,832	Si

3.1.2 Estructura de longitudes e indicadores basados en la longitud de

madurez

Se analizó la estructura de longitudes de captura con diferentes métodos de pesca de 55 especies del litoral Caribe durante el año 2021, lo que permitió el análisis de 146 combinaciones especiearte. Con base en el árbol de decisión propuesto por Cope y Punt (2009), en 16 de los casos (11%) la selectividad de las pesquerías se centró en la captura de individuos grandes. De otro lado, en 29 casos (19,9%) el porcentaje de individuos con longitudes iguales o superiores al valor de Lm superó el 80%, en tanto que se registraron 31 casos (21,2%) en los cuales el porcentaje de individuos inscritos dentro del rango óptimo de captura superó el 40%. De otro lado, en 8 casos (5,5%) el porcentaje de mega-reproductores fluctuó entre el 30% y el 40%. En general, los diferentes tipos de artes o métodos de pesca capturaron proporciones muy bajas de individuos dentro del rango óptimo de captura. Solo las líneas de mano y las redes de enmalle fijas capturaron una fracción elevada de individuos con longitudes ubicadas dentro del rango óptimo de captura. Es el caso de las especies *Mugil incilis, Calamus penna, Chloroscombrus chrysurus, Cynoscion leiarchus, Scomberomorus brasiliensis* y *Trichiurus lepturus* (Tabla 4).

En 25 de los casos analizados el porcentaje de individuos capturados con una longitud mayor que la L_m fue superior al 80%. Estos casos fueron los siguientes: Centropomus undecimalis con línea de mano cometa y buceo de peces; Chloroscombrus chrysurus con red de enmalle de encierro y red de enmalle fija; Haemulon bonariense con red de enmalle fija; Haemulon plumieri con red de enmalle fija, buceo marino mixto, nasas de peces, red de enmalle de deriva y red de enmalle de encierro; Larimus breviceps con red de enmalle fija; Lutjanus synagris con nasas de peces y palangre; Macrodon ancylodon con red de enmalle fija; Menticirrhus americanus con red de enmalle fija; Mugil incilis con flecha; Prochilodus magdalenae con red de enmalle fija; Sciades proops con línea de mano cometa, palangre y red de enmalle fija; Scomberomorus brasiliensis con red de enmalle de deriva y red de enmalle de encierro; Selar crumenophthalmus con red de enmalle de encierro; y Sparisoma chrysopterum, Sparisoma rubripinne y Umbrina coroides con red de enmalle fija. Los casos restantes correspondieron a pesquerías basadas en la captura de individuos pequeños, incluso inmaduros. Particularmente, las capturas de Caranx hippos con redes de enmalle fijas y línea de mano y de Lutjanus vivanus con línea de mano se basan en la fracción de tamaños más pequeños e inmaduros (Tabla 4), evidenciando una posible sobrepesca de crecimiento de estos recursos pesqueros (Froese, 2004).

Tabla 4. Análisis de la estructura de longitudes de especies monitoreadas en el litoral Caribe durante el año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{opt}), la longitud de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mat}) y L_{mega} (P_{mega}), así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}). LT: Longitud total, LH: Longitud horquilla.

Especie	Arte	Tipo de longitud	n		tud (cm)	Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
477 7 7	D 11 11 71			Min.	Max.		10.0		0.04.6		0.04.6	
Albula vulpes	Red de enmalle fija	LT	191	24,9	49,8	45,6	49,0	53,9	0,016	0,000	,	,
Bairdiella ronchus	Línea de mano	LT	256	12,3	52,1	21,2	21,9	24,1	0,625	0,531	0,152	1,309
Calamus penna	Nasas de Peces	LT	1145	20,2	44, 0	27,0	28,2	31,1	0,721	0,286	0,595	1,602
Calamus penna	Red de enmalle fija	LT	599	12,8	31,9	27,0	28,2	31,1	0,250	0,007	0,444	0,701
Calamus penna	Red de enmalle de encierro	LT	184	16,2	36,7	27,0	28,2	31,1	0,000	0,000	0,000	0,000
Caranx bartholomaei	Línea de mano	LH	310	11,5	32,3	45,0	48,3	53,2	0,000	0,000	0,000	0,000
Caranx crysos	Línea de mano	LH	14131	11,5	45,8	28,0	29,3	32,3	0,130	0,035	0,149	0,313
Caranx crysos	Red de enmalle fija	LH	8031	14,2	48,1	28,0	29,3	32,3	0,284	0,128	0,254	0,665
Caranx crysos	Red de enmalle de deriva	LH	1301	19,9	58,3	28,0	29,3	32,3	0,257	0,237	0,148	0,643
Caranx crysos	Red de enmalle de encierro	LH	3903	13,3	52,6	28,0	29,3	32,3	0,211	0,080	0,287	0,578
Caranx crysos	Chinchorro	LH	175	13,4	28,7	28,0	29,3	32,3	0,000	0,000	0,000	0,000
Caranx crysos	Chinchorro de jala playa	LH	357	14,3	35,7	28,0	29,3	32,3	0,000	0,000	0,000	0,000
Caranx crysos	Atarraya	LH	127	11,3	38,9	28,0	29,3	32,3	0,000	0,000	0,000	0,000
Caranx hippos	Línea de mano	LH	3285	1,3	87,2	62,7	68,6	75,4	0,012	0,003	0,009	0,024
Caranx hippos	Red de enmalle de encierro	LH	3788	13,0	93,4	62,7	68,6	75,4	0,084	0,035	0,052	0,172
Caranx hippos	Red de enmalle fija	LH	5532	10,6	80,6	62,7	68,6	75,4	0,003	0,001	0,002	0,006
Caranx hippos	Chinchorro	LH	500	13,2	61,7	62,7	68,6	75,4	0,000	0,000	0,002	0,002
Caranx hippos	Atarraya	LH	107	13,2	49,2	62,7	68,6	75,4	0,000	0,000	0,000	0,000
Caranx hippos	Red de enmalle fija campaña	LH	301	17,3	42,6	62,7	68,6	75,4	0,000	0,000	0,000	0,000
Caranx latus	Línea de mano correteo curricán o trolling	LH	136	18,5	49,7	42,0	45,0	49,5	0,059	0,007	0,066	0,132
Caranx latus	Línea de mano	LH	658	11,6	74,3	42,0	45,0	49,5	0,359	0,267	0,108	0,734
Caranx latus	Red de enmalle de encierro	LH	126	11,5	62,4	42,0	45,0	49,5	0,000	0,000	0,000	0,000
Caranx ruber	Red de enmalle de encierro	LH	437	15,4	34,1	31,0	32,7	35,9	0,025	0,000	0,096	0,121
Cathorops mapale	Línea de mano	LT	411	14,3	37,2	23,0	23,8	26,2	0,718	0,433	0,377	1,528
Cathorops mapale	Red de enmalle fija	LT	906	14,1	30,6	23,0	23,8	26,2	0,651	0,200	0,651	1,502
Cathorops mapale	Atarraya	LT	157	15,0	31,7	23,0	23,8	26,2	0,000	0,000	0,000	0,000

Espacia	Auto	Tipo de longitud	-	Longit	ud (cm)	L	Lone	Image	Descrip	Denage	Dont	Dob:
Especie	Arte	1 ipo de iongitud	11	Min.	Max.	Lm	ropt	Lmega	rmat	rmega	Popt	Pobj
Cathorops mapale	Red de enmalle de encierro	LT	178	18,4	29,1	23,0	23,8	26,2	0,000	0,000	0,000	0,000
Centropomus ensiferus	Línea de mano	LT	202	14,4	38,0	36,2	38,4	42,3	0,005	0,000	0,005	0,010
Centropomus ensiferus	Atarraya	LT	218	13,2	28,5	36,2	38,4	42,3	0,000	0,000	0,000	0,000
Centropomus ensiferus	Red de enmalle fija	LT	496	18,6	81,0	36,2	38,4	42,3	0,073	0,060	0,028	0,161
Centropomus undecimalis	Buceo de peces	LT	279	36,7	86,5	46,2	49,7	54,7	0,939	0,724	0,222	1,885
Centropomus undecimalis	Línea de mano	LT	442	14,2	92,3	46,2	49,7	54,7	0,290	0,186	0,124	0,600
Centropomus undecimalis	Red de enmalle fija	LT	4740	10,5	108,9	46,2	49,7	54,7	0,644	0,603	0,049	1,296
Centropomus undecimalis	Atarraya	LT	493	14,1	80,3	46,2	49,7	54,7	0,030	0,020	0,014	0,065
Centropomus undecimalis	Red de enmalle de encierro	LT	252	15,5	93,6	46,2	49,7	54,7	0,329	0,210	0,143	0,683
Centropomus undecimalis	Chinchorro	LT	183	32,2	84,0	46,2	49,7	54,7	0,000	0,000	0,000	0,000
Centropomus undecimalis	Línea de mano cometa	LT	231	44,9	104,5	46,2	49,7	54,7	0,000	0,000	0,000	0,000
Chloroscombrus chrysurus	Línea de mano	LT	207	12,1	25,8	18,4	18,9	20,7	0,623	0,329	0,469	1,420
Chloroscombrus chrysurus	Red de enmalle fija	LT	1079	14,1	39,4	18,4	18,9	20,7	0,878	0,796	0,133	1,806
Chloroscombrus chrysurus	Red de enmalle de encierro	LT	279	16,4	30,2	18,4	18,9	20,7	0,000	0,000	0,000	0,000
Conodon nobilis	Línea de mano	LT	495	10,1	34,5	20,5	21,1	23,2	0,592	0,347	0,374	1,313
Conodon nobilis	Red de enmalle fija	LT	1096	13,2	49,3	20,5	21,1	23,2	0,682	0,504	0,302	1,487
Conodon nobilis	Red de enmalle de encierro	LT	127	20,6	34,9	20,5	21,1	23,2	0,000	0,000	0,000	0,000
Conodon nobilis	Chinchorro	LT	190	14,5	30,6	20,5	21,1	23,2	0,000	0,000	0,000	0,000
Conodon nobilis	Palangre o espinel de fondo	LT	101	20,0	38,8	20,5	21,1	23,2	0,000	0,000	0,000	0,000
Cynoscion acoupa	Red de enmalle fija	LT	260	17,5	47,2	38,1	40,6	44,6	0,015	0,004	0,015	0,035
Cynoscion jamaicensis	Red de enmalle fija	LT	301	10,8	39,4	25,1	26,1	28,8	0,000	0,000	0,000	0,000
Cynoscion leiarchus	Red de enmalle fija	LT	234	21,4	36,5	24,3	25,3	27,8	0,000	0,000	0,000	0,000
Cynoscion virescens	Red de enmalle fija	LT	675	17,0	75,6	24,0	24,9	27,4	0,335	0,311	0,160	0,806
Elops smithi	Red de enmalle fija	LT	829	20,1	84,5	49,0	52,9	58,2	0,146	0,033	0,135	0,314
Elops smithi	Línea de mano	LT	2238	18,1	80,0	49,0	52,9	58,2	0,089	0,025	0,083	0,197
Elops smithi	Atarraya	LT	221	15,3	43,9	49,0	52,9	58,2	0,000	0,000	0,000	0,000
Elops smithi	Chinchorro	LT	131	28,5	83,2	49,0	52,9	58,2	0,000	0,000	0,000	0,000
Eugerres plumieri	Atarraya	LT	1014	10,5	35,7	19,0	19,5	21,4	0,481	0,296	0,362	1,139
Eugerres plumieri	Red de enmalle de encierro	LT	133	10,7	27,2	19,0	19,5	21,4	0,000	0,000	0,000	0,000
Eugerres plumieri	Red de enmalle fija	LT	436	10,0	33,2	19,0	19,5	21,4	0,358	0,181	0,394	0,933
Euthynnus alletteratus	Línea de mano correteo curricán o trolling	LH	792	17,1	45,8	40,0	42,7	47,0	0,027	0,000		0,068
Euthynnus alletteratus	Red de enmalle de encierro	LH	1691	20,7	62,8	40,0	42,7		0,253	0,024	0,295	0,572

Especie	Arte	Tipo de longitud	n		ud (cm)	·Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobi
				Min.	Max.							
Euthynnus alletteratus	Línea de mano	LH	860	15,2	74,2	40,0	42,7	47, 0	0,059	0,051	-	-
Gerres cinereus	Red de enmalle fija	LT	281	12,8	27,2	16,6	16,9	18,6	0,641	0,274	0,616	1,530
Gerres cinereus	Atarraya	LT	216	14,5	32,2	16,6	16,9	18,6	0,000	0,000	0,000	0,000
Haemulon bonariense	Red de enmalle fija	LT	772	10,5	34,0	17,3	17,7	19,4	0,983	0,927	0,067	1,978
Haemulon bonariense	Red de enmalle de encierro	LT	239	17,8	29,5	17,3	17,7	19,4	1,000	0,858	0,142	2,000
Haemulon plumieri	Red de enmalle de deriva	LT	1056	12,5	29,2	19,0	19,5	21,4	0,993	0,968	0,027	1,988
Haemulon plumieri	Red de enmalle fija	LT	8856	15,1	41,4	19,0	19,5	21,4	0,985	0,906	0,091	1,983
Haemulon plumieri	Red de enmalle de encierro	LT	7432	14,4	35,5	19,0	19,5	21,4	0,949	0,751	0,240	1,940
Haemulon plumieri	Nasas de Peces	LT	3009	12,5	38,4	19,0	19,5	21,4	0,986	0,975	0,015	1,975
Haemulon plumieri	Línea de mano	LT	457	9,3	30,6	19,0	19,5	21,4	0,840	0,724	0,151	1,716
Haemulon plumieri	Buceo mixto	LT	342	14,8	36,6	19,0	19,5	21,4	0,904	0,789	0,158	1,851
Haemulon plumieri	Palangre o espinel de fondo	LT	191	21,5	35,0	19,0	19,5	21,4	0,000	0,000	0,000	0,000
Harengula clupeola	Atarraya	LT	154	7,0	19,5	14,3	14,5	15,9	0,000	0,000	0,000	0,000
Katsuwonus pelamis	Línea de mano correteo curricán o trolling	LH	185	25,6	52,7	51,1	55,3	60,8	0,016	0,000	0,016	0,032
Larimus breviceps	Red de enmalle fija	LT	308	14,3	21,5	13,3	13,4	14,7	1,000	0,997	0,003	2,000
Larimus breviceps	Red de enmalle de encierro	LT	105	18,1	24,5	13,3	13,4	14,7	0,000	0,000	0,000	0,000
Lutjanus analis	Red de enmalle fija	LT	1457	17,4	73,3	32,3	34,1	37,5	0,334	0,150	0,317	0,802
Lutjanus analis	Línea de mano	LT	167	17,8	97,6	32,3	34,1	37,5	0,760	0,473	0,383	1,617
Lutjanus analis	Palangre o espinel de fondo	LT	109	25,3	81,5	32,3	34,1	37,5	0,000	0,000	0,000	0,000
Lutjanus analis	Red de enmalle de deriva	LT	140	26,3	48,3	32,3	34,1	37,5	0,000	0,000	0,000	0,000
Lutjanus griseus	Red de enmalle fija	LT	268	3,4	66,5	42, 0	45,0	49,5	0,078	0,041	0,063	0,183
Lutjanus purpureus	Línea de mano	LT	561	17,3	84,2	43,2	46,3	50,9	0,066	0,045	0,025	0,135
Lutjanus synagris	Línea de mano	LT	6979	10,2	65,0	25,0	26,0	28,6	0,374	0,177	0,363	0,914
Lutjanus synagris	Red de enmalle fija	LT	2718	3,0	45,3	25,0	26,0	28,6	0,577	0,324	0,357	1,258
Lutjanus synagris	Red de enmalle de encierro	LT	2008	15,9	45,7	25,0	26,0	28,6	0,329	0,121	0,379	0,829
Lutjanus synagris	Palangre o espinel de fondo	LT	1218	17,3	50,2	25,0	26,0	28,6	0,892	0,635	0,319	1,846
Lutjanus synagris	Nasas de Peces	LT	2415	11,5	47,9	25,0	26,0	28,6	0,972	0,775	0,216	1,963
Lutjanus vivanus	Línea de mano	LT	4289	22,1	78,7	50,0	54,0	59,4	0,008	0,003	0,008	0,020
Lutjanus vivanus	Línea de mano correteo curricán o trolling	LT	108	26,4	45,6	50,0	54,0	59,4	0,000	0,000	0,000	0,000
Macrodon ancylodon	Red de enmalle de deriva	LT	1996	12,3	39,3	22,1	22,9	25,1	0,744	0,583	0,245	1,572
Macrodon ancylodon	Red de enmalle fija	LT	461	22,3	38,1	22,1	22,9	25,1	1,000	0,987	0,013	2,000
Megalops atlanticus	Red de enmalle fija	LH	241	19,3	128,4	117,5	132,8	146,1	0,004	0,000	0,004	0,008

Espação	Arte	Tipo de longitud		Longit	ud (cm)	· Lm	Lont	Lmoss	Dmat	Dmaca	Dont	Dob:
Especie	Alle	Tipo de longitud	I1	Min.	Max.	rın	robt	Linega	rinat	Pmega	Popt	robj
Menticirrhus americanus	Red de enmalle fija	LT	429	17,6	34,5	18,1	18,5	20,4	0,995	0,869	0,131	1,995
Micropogonias furnieri	Línea de mano	LT	141	13,2	31,2	32,2	34,0	37,4	0,000	0,000	0,007	0,007
Micropogonias furnieri	Red de enmalle fija	LT	1225	10,3	48,5	32,2	34,0	37,4	0,178	0,038	0,201	0,417
Mugil curema	Red de enmalle fija	LT	140	26,5	43,3	24,9	25,9	28,5	0,000	0,000	0,000	0,000
Mugil curema	Red de enmalle de encierro	LT	334	20,7	44,7	24,9	25,9	28,5	0,000	0,000	0,000	0,000
Mugil curema	Atarraya	LT	147	17,2	34,7	24,9	25,9	28,5	0,000	0,000	0,000	0,000
Mugil incilis	Red de enmalle fija	LT	10877	13,0	49,8	28,8	30,2	33,2	0,833	0,390	0,514	1,738
Mugil incilis	Atarraya	LT	13009	10,0	42,9	28,8	30,2	33,2	0,275	0,043	0,358	0,676
Mugil incilis	Red de enmalle de encierro	LT	4590	13,0	38,6	28,8	30,2	33,2	0,134	0,012	0,221	0,367
Mugil incilis	Flecha	LT	507	25,3	48,5	28,8	30,2	33,2	0,994	0,955	0,043	1,992
Mugil liza	Chinchorro camaronero	LT	132	30,1	72,7	35,0	37,1	40,8	0,848	0,689	0,235	1,773
Mugil liza	Red de enmalle de encierro	LT	512	21,4	68,5	35,0	37,1	40,8	0,607	0,496	0,189	1,293
Mugil liza	Red de enmalle fija	LT	104	29,5	80,7	35,0	37,1	40,8	0,000	0,000	0,000	0,000
Mugil liza	Flecha	LT	127	46,4	83,6	35,0	37,1	40,8	0,000	0,000	0,000	0,000
Ocyurus chrysurus	Línea de mano	LT	351	17,2	76,0	42,1	45,1	49,6	0,165	0,125	0,046	0,336
Opisthonema oglinum	Red de enmalle de encierro	LT	795	17,6	29,2	19,5	20,0	22,0	0,887	0,454	0,538	1,879
Opisthonema oglinum	Red de enmalle fija	LT	655	10,6	29,4	19,5	20,0	22,0	0,788	0,513	0,395	1,696
Paralonchurus brasiliensis	Red de enmalle fija	LT	174	14,5	20,1	14,9	15,1	16,6	0,989	0,575	0,425	1,989
Paralonchurus brasiliensis	Chinchorro	LT	167	14,1	21,3	14,9	15,1	16,6	0,000	0,000	0,000	0,000
Priacanthus arenatus	Red de enmalle fija	LT	182	14,8	39,7	27,0	28,2	31,1	0,000	0,000	0,000	0,000
Priacanthus arenatus	Red de enmalle de encierro	LT	107	24,2	39,1	27,0	28,2	31,1	0,000	0,000	0,000	0,000
Prochilodus magdalenae	Red de enmalle fija	LE	461	23,5	48,5	23,8	24,7	27,2	0,998	0,909	0,091	1,998
Rhomboplites aurorubens	Línea de mano	LT	132	19,3	27,1	28,8	30,2	33,2	0,000	0,000	0,000	0,000
Rhomboplites aurorubens	Palangre o espinel de fondo	LT	567	12,6	32,5	28,8	30,2	33,2	0,009	0,000	0,039	0,048
Sciades proops	Red de enmalle fija	LT	2054	20,3	120,0	35,2	37,3	41,1	0,946	0,899	0,056	1,901
Sciades proops	Palangre o espinel de fondo	LT	278	19,6	86,0	35,2	37,3	41,1	0,745	0,701	0,058	1,504
Sciades proops	Línea de mano	LT	102	16,7	82,3	35,2	37,3	41,1	0,000	0,000	0,000	0,000
Sciades proops	Línea de mano cometa	LT	141	48,7	96,5	35,2	37,3	41,1	0,000	0,000	0,000	0,000
Scomberomorus brasiliensis	Línea de mano	LH	2118	14,2	98,3	34,5	36,5	40,2	0,730	0,439	0,335	1,504
Scomberomorus brasiliensis	Red de enmalle fija	LH	5485	16,4	114,5	34,5	36,5	40,2	0,778	0,387	0,456	1,621
	Red de enmalle de deriva	LH	684	29,3	74,0	34,5	36,5	40,2	0,990	0,918	0,075	1,982
	Línea de mano correteo curricán o trolling		138	23,1	71,5	34,5	36,5				0,000	0,000

	A .	77' 1 1 1 1 1		Longit	ud (cm)	Ŧ	Ŧ .	т	ъ .	D	D .	D 1:
Especie	Arte	Tipo de longitud	n	Min.	Max.	Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
Scomberomorus brasiliensis	Red de enmalle de encierro	LH	674	18,6	73,2	34,5	36,5	40,2	0,927	0,638	0,344	1,909
Scomberomorus brasiliensis	Red de enmalle fija campaña	LH	113	28,7	65,2	34,5	36,5	40,2	0,000	0,000	0,000	0,000
Scomberomorus cavalla	Línea de mano	LH	868	15,1	148,3	63,0	68,9	75,8	0,098	0,061	0,039	0,198
Scomberomorus cavalla	Red de enmalle fija	LH	1675	20,5	114,4	63,0	68,9	75,8	0,052	0,029	0,026	0,107
Scomberomorus cavalla	Red de enmalle de deriva	LH	735	32,5	118,3	63,0	68,9	75,8	0,377	0,053	0,374	0,804
Scomberomorus cavalla	Línea de mano correteo curricán o trolling	LH	220	25,1	78,3	63,0	68,9	75,8	0,295	0,005	0,336	0,636
Scomberomorus cavalla	Red de enmalle de encierro	LH	351	23,4	121,9	63,0	68,9	75,8	0,319	0,023	0,336	0,678
Selar crumenophthalmus	Línea de mano	LT	484	16,7	32,2	22,4	23,2	25,5	0,847	0,376	0,583	1,806
Selar crumenophthalmus	Red de enmalle fija	LT	192	19,7	33,2	22,4	23,2	25,5	0,000	0,000	0,000	0,000
Selar crumenophthalmus	Red de enmalle de encierro	LT	502	21,6	31,8	22,4	23,2	25,5	0,994	0,855	0,145	1,994
Sparisoma chrysopterum	Red de enmalle fija	LT	657	19,4	36,1	24,2	25,2	27,7	0,884	0,642	0,289	1,816
Sparisoma chrysopterum	Red de enmalle de encierro	LT	1004	19,7	36,9	24,2	25,2	27,7	0,793	0,286	0,649	1,728
Sparisoma rubripinne	Red de enmalle fija	LT	515	18,0	36,2	16,1	16,4	18,0	1,000	0,998	0,002	2,000
Sphyraena barracuda	Línea de mano correteo curricán o trolling	LT	105	31,9	71,3	103,7	116,4	128,1	0,000	0,000	0,000	0,000
Sphyraena barracuda	Línea de mano	LT	170	30,5	129,0	103,7	116,4	128,1	0,018	0,006	0,012	0,035
Sphyraena barracuda	Red de enmalle fija	LT	115	30,9	144,8	103,7	116,4	128,1	0,000	0,000	0,000	0,000
Thunnus alalunga	Línea de mano correteo curricán o trolling	LH	965	20,9	49,7	85,3	94,8	104,3	0,000	0,000	0,000	0,000
Thunnus alalunga	Línea de mano	LH	178	23,8	72,0	85,3	94,8	104,3	0,000	0,000	0,000	0,000
Thunnus albacares	Línea de mano	LH	1444	23,4	135,5	54,7	59,4	65,3	0,016	0,006	0,017	0,039
Trichiurus lepturus	Red de enmalle fija	LT	884	28,4	121,2	71,1	78,3	86,1	0,549	0,318	0,242	1,109
Trichiurus lepturus	Línea de mano	LT	1713	20,7	121,4	71,1	78,3	86,1	0,439	0,027	0,477	0,943
Trichiurus lepturus	Red de enmalle de deriva	LT	1035	12,5	126,2	71,1	78,3	86,1	0,793	0,454	0,347	1,594
Trichiurus lepturus	Atarraya	LT	130	26,6	77,1	71,1	78,3	86,1	0,000	0,000	0,000	0,000
Umbrina coroides	Red de enmalle fija	LT	1147	15,7	35,0	11,2	11,2	12,3	1,000	1,000	0,000	2,000

El porcentaje de individuos maduros en las capturas con líneas de mano de las especies *Caranx crysos*, *C. hippos*, *Elops smithi*, *Lutjanus synagris* y *L. vivanus* fue inferior al 40%. Aunque la línea de mano se considera un arte selectivo, el uso de anzuelos de tamaños muy pequeños en la pesca artesanal impacta a los individuos más pequeños e inmaduros, como se ha documentado previamente en la región (Manjarrés *et al.*, 2004).

Los individuos muestreados de cojinoa negra, *Caranx crysos*, provinieron principalmente de los desembarcos con red de enmalle fija. La longitud de captura varió entre 14,9 cm y 48,1 cm LH, con una mayor frecuencia de ejemplares inmaduros (L_m = 28 cm LH) (Figura 1). En efecto, la longitud promedio de captura fue de 26,5 cm, lo cual evidencia una captura recurrente de individuos pequeños que aún no se han reproducido por primera vez. Esto coincide con lo señalado por Marrugo *et al.* (2016), quien plantea que muchas de las configuraciones de las redes de enmalle usadas en el Caribe colombiano capturan peces con tamaño progresivamente menores.

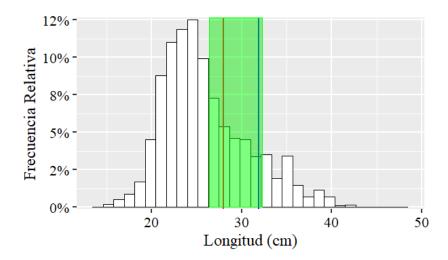


Figura 1. Estructura de longitudes de los individuos de *Caranx crysos* capturados con red de enmalle fija en el Caribe durante el año 2021. Las cifras están en longitud horquilla. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 8031.

El análisis comparativo de la longitud media de captura de *Caranx crysos* con red de enmalle fija entre 2018 y 2021 evidencia variaciones interanuales en los meses que registraron valores mayores a la L_m; en el 2021 esto sucedió en marzo, abril y junio, mientras que en el 2019 ocurrió en abril y mayo. Según Altamar *et al.* (2015), las redes de enmalle capturan una elevada fracción de individuos inmaduros de esta especie, debido al uso de tamaños de malla no apropiados (Figura 2).

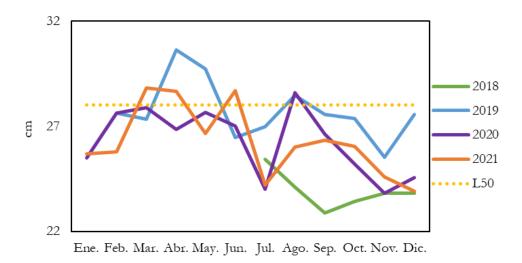


Figura 2. Variación mensual de la longitud media de captura con red de enmalle fija de *Caranx crysos* en el Caribe durante el período 2018-2021. Las cifras están en longitud horquilla. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1166, en 2019 3730, en 2020 5055 y en 2021 8031.

Durante el año 2021 se registró la longitud de 4740 individuos de la especie *Centropomus undecimalis* (robalo), todos capturados con red de enmalle fija. La estructura de longitudes resultante fluctuó entre 10,5 cm y 108,9 cm LT, con dos modas localizadas a los 30 cm y 78 cm LT. La mayoría de los individuos capturados exhibieron una longitud superior a la longitud de madurez (Figura 3). Según Gómez-Ortíz *et al.* (2015), los machos dominan las longitudes inferiores, mientras que las hembras las superiores, debido a su condición de hermafroditismo protándrico, lo cual guarda relación con la estructura bimodal de la estructura de longitudes de captura observada durante el periodo monitoreado. En efecto, Gassman *et al.* (2017) encontró predominancia de hembras de esta especie en longitudes superiores a 67 cm.

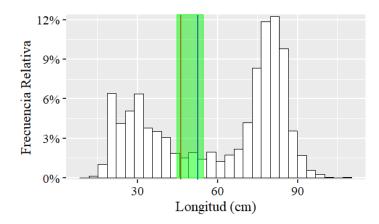


Figura 3. Estructura de longitudes de los individuos de *Centropomus undecimales* capturados con red de enmalle fija en el Caribe durante el año 2021. Las cifras están en longitud total. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 4740.

El promedio de las longitudes de captura del róbalo con red de enmalle fija fue superior a la L_m (58 cm) en la mayoría de los meses del año 2019, en los meses que se registraron longitudes de captura en el 2020 y durante el inicio y final del 2021. En contraste, los últimos meses de 2018 y de abril a agosto de 2021, las longitudes promedio de captura fueron inferiores a la L_m (Figura 4). Debido al hermafroditismo protándrico de esta especie (Gassman *et al.*, 2017), el incremento de las capturas de individuos pequeños pone en riesgo la viabilidad reproductiva de la especie.

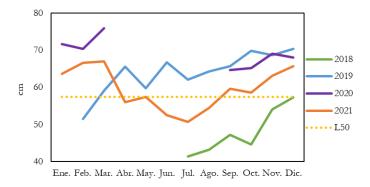


Figura 4. Variación mensual de la longitud media de captura con red de enmalle fija de *Centropomus undecimalis* en el Caribe durante el período 2018-2021. Las cifras están en longitud total. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1616, en 2019 5150, en 2020 2873 y en 2021 4740.

Los individuos de lisa, *Mugil incilis*, que fueron medidos durante el año 2021 provinieron en una elevada proporción de los desembarcos de atarraya. La mayor fracción de los individuos capturados fueron pequeños (intervalo de 11,4-42,5 cm LT). En estudios previos se evidenció que los desembarcos de atarraya tienden a capturar individuos cuya longitud es inferior a la L_m (Mármol *et al.*, 2010). La longitud promedio de captura obtenida durante el monitoreo fue 25,6 cm LT, inferior a la L_m de la especie (29,0 cm LT) (Figura 5).

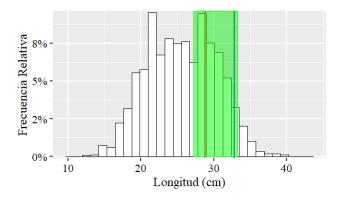


Figura 5. Estructura de longitudes de los individuos de *Mugil incilis* capturados con atarraya en el Caribe durante el año 2021. Las cifras están en longitud total. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 13009.

La longitud promedio de captura con atarraya de *Mugil incilis* durante el período 2019-2021 indica que la especie recibe una fuerte presión pesquera sobre individuos pequeños, como lo plantearon Mejía y Acero (2002) en referencia a las capturas observadas en diferentes artes de pesca artesanales. Durante todos los años evaluados, predominó el desembarco de individuos cuya longitud no alcanzó la L_m. Solo entre octubre y diciembre de 2018 y en febrero y marzo de 2020 se observó que el promedio de la longitud de captura supero la L_m (Figura 6).

3.2 LITORAL PACÍFICO

3.2.1 Relaciones biométricas

Con base en la información disponible, en el litoral Pacífico fue posible estimar los parámetros de la relación longitud-peso (RLP) para la especie priorizada *Lutjanus guttans*, la cual es descrita mediante la ecuación W=0,021LT^{2,835} (R²=0,979; n=259), con longitudes comprendidas entre 23,5 y 59,7 cm LT. Se observa que esta especie tiene un crecimiento alometrico negativo (I.C.

95% = 2,784 – 2,886) y un factor de condición relativamente alto (I.C. 95% = 0,017 – 0,025). Los coeficientes a y b son similares a los reportados por Rojo-Vásquez *et al.* (2009) en el Pacífico central mexicano (a=0,0232; b=2,82 y n=1932) y por Soto *et al.* (2009) para el Golfo de Nicoya en Costa Rica (a=0,024; b=2,81 y n=1109), pero diferentes a los obtenidos por Correa-Herrera y Jiménez-Segura (2013) en el Parque Nacional Natural Utría en Pacífico colombiano (a =8,8x10⁻⁶; b=3,09 y n=272).

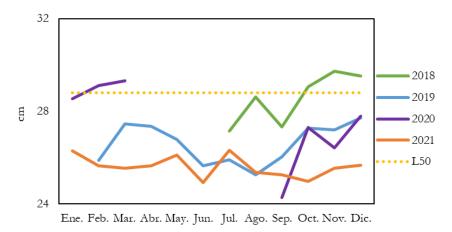


Figura 6. Variación mensual de la longitud media de captura con atarraya de *Mugil incilis* en el Caribe durante el periodo 2018-2021. Las cifras están en longitud total. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 3475, en 2019 8214, en 2020 4559 y en 2021 13009.

3.2.2 Estructura de longitudes e indicadores basados en la longitud de madurez

Se analizó la estructura de longitudes de ocho especies con varios tipos de artes de pesca, lo que significó un total de 38 combinaciones especie-arte de pesca. Los artes de pesca construidos a partir de paños de redes (red de enmalle camaronera, de deriva, de encierro, fija, de cerco y chinchorro) fueron los que significaron los mayores tamaños muestrales de las especies evaluadas, representando aproximadamente el 76,5% del total de individuos muestreados. Más del 80% de los individuos muestreados de *Cynoscion phoxocephalus*, *Centropomus armatus* y *Lutjanus guttatus* registraron tamaños superiores a la L_m . Estas tres especies son capturadas principalmente con redes de enmalle (de deriva, de encierro, fija y camaronera) y en menor medida con espinel de fondo y líneas de mano. Lo anterior sugiere que estos métodos estarían teniendo un impacto bajo sobre el crecimiento de estas especies. Lo anterior contrasta con lo reportado para especies

como Mugil cephalus, Scomberomorus sierra, Acanthocybium solandri y Thunnus albacares, para las cuales las redes de pesca sí podrían presentar efectos importantes, dado que menos del 10% de los individuos muestreados de estas especies presentan longitudes inferiores a la L_m . Dentro de los casos analizados, solo Scomberomorus sierra capturada con línea de mano mostró un porcentaje mayor a 50% de individuos capturados dentro del rango óptimo de captura. Haciendo un análisis conjunto de los tres indicadores porcentuales (P_{mat} , P_{Lopt} y P_{mega}), se concluye que las artes que presentaron mayor impacto fueron las redes de encierro continental y las líneas de mano, siendo C. armatus, C. phoxocephalus, C. guttatus, C0. sierra y C1. albacares las especies más afectadas (Tabla 5).

En el caso de los individuos de *Cynoscion phoxocephalus* capturados con red de enmalle fija marina, el intervalo de longitudes registrado fue de 25,7 cm a 56,5 cm LT. El histograma de estructura de longitudes para la especie muestra que la mayoría de los individuos capturados estuvieron por encima de la longitud de madurez e incluso de la de megadesovadores para esta especie (Figura 7). Lo anterior se confirma con las longitudes promedio de captura para el periodo 2018 - 2021, las cuales estuvieron por encima de la longitud de madurez (33,7 cm LT), lo que sugiere un impacto menor de esta pesquería sobre el crecimiento de la especie (Figura 8). Según Zapata y Castellanos-Galindo (2017), a lo largo del año evaluado se han encontrado hembras maduras, con un mayor pico en el período noviembre–diciembre, sugiriendo que la especie exhibe una adecuada capacidad reproductiva, dada la captura reducida de individuos inmaduros.

En el histograma de frecuencia de longitudes se puede ver que la mayoría de los individuos de $Lutjanus\ guttatus\$ capturados con línea de mano registraron longitudes superiores a la de megadesovadores, lo cual es coherente con la posición de la longitud de madurez en la estructura de longitudes de captura de esta especie (Figura 9) y con la tendencia temporal de la longitud media de captura durante el período 2018-2021, la cual se mantuvo por encima de la L_m (34 cm LT, intervalo de 15-74 cm LT) (Figura 9Figura 10). Se ha documentado que esta especie presenta un pico de reproducción en el segundo semestre, principalmente entre septiembre y noviembre (Caicedo $et\ al.,\ 2015$). De acuerdo con los resultados obtenidos, en las capturas con líneas de mano registradas durante ese periodo predominan individuos con longitudes superiores a la L_m , lo que conduce a concluir que esta pesquería está lejos de generar una sobrepesca de crecimiento en esta población.

Tabla 5. Análisis de la estructura de longitudes de especies monitoreadas en el litoral Pacífico durante el año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{opt}), la longitud de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mat}) y L_{mega} (P_{mega}), así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}). LT: Longitud total, LH: Longitud horquilla.

Б ;	Α.,	Tipo de		Longi	tud (cm)	т	т.,	т	Desat	D	D	D 1:
Especie	Arte	longitud	n	Min.	Max.	- Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
Acanthocybium solandri	Red de enmalle camaronera	LH	278	20,5	68,4	102,0	114,4	125,9	0,000	0,000	0,000	0,000
Brotula clarkae	Palangre o espinel de fondo	LT	1586	42, 0	132,0	77,5	85,7	94,3	0,347	0,037	0,320	0,704
Brotula clarkae	Línea de mano	LT	783	36,9	96,5	77,5	85,7	94,3	0,410	0,011	0,406	0,828
Centropomus armatus	Red de enmalle de deriva	LT	3024	20,2	77,2	32,5	34,3	37,7	0,873	0,629	0,292	1,794
Centropomus armatus	Red de enmalle de encierro	LT	226	24,8	46,3	32,5	34,3	37,7	0,664	0,376	0,394	1,434
Centropomus armatus	Red de enmalle fija	LT	1583	19,0	66,4	32,5	34,3	37,7	0,786	0,539	0,314	1,639
Centropomus armatus	Red de enmalle camaronera	LT	793	8,5	54,5	32,5	34,3	37,7	0,480	0,272	0,310	1,063
Centropomus armatus	Red de enmalle de encierro	LT	373	4,0	56,5	32,5	34,3	37,7	0,823	0,670	0,188	1,681
Centropomus armatus	Chinchorro marino	LT	317	22,0	72,0	32,5	34,3	37,7	0,000	0,000	0,000	0,000
Centropomus armatus	Línea de mano	LT	286	15,7	57,8	32,5	34,3	37,7	0,000	0,000	0,000	0,000
Cynoscion phoxocephalus	Red de enmalle de deriva	LT	2781	19,3	74,0	28,5	29,9	32,9	0,985	0,887	0,110	1,981
Cynoscion phoxocephalus	Red de enmalle de encierro	LT	361	23,4	70,0	28,5	29,9	32,9	0,920	0,615	0,368	1,903
Cynoscion phoxocephalus	Red de enmalle fija	LT	2263	25,7	56,5	28,5	29,9	32,9	0,981	0,877	0,120	1,978
Cynoscion phoxocephalus	Red de enmalle camaronera	LT	848	19,3	61,0	28,5	29,9	32,9	0,941	0,854	0,114	1,909
Cynoscion phoxocephalus	Red de cerco artesanal o ruche	LT	509	25,3	52,5	28,5	29,9	32,9	0,963	0,703	0,283	1,949
Cynoscion phoxocephalus	Chinchorro marino	LT	246	26,1	61,8	28,5	29,9	32,9	0,980	0,874	0,122	1,976
Cynoscion phoxocephalus	Red de enmalle de encierro	LT	1165	23,2	60,2	28,5	29,9	32,9	0,992	0,936	0,057	1,985
Cynoscion phoxocephalus	Línea de mano	LT	135	30,1	52,1	28,5	29,9	32,9	0,000	0,000	0,000	0,000
Lutjanus guttatus	Línea de mano	LT	5639	15,0	74,0	31,0	32,7	35,9	0,781	0,578	0,265	1,624
Lutjanus guttatus	Red de enmalle camaronera	LT	1024	17,4	58,8	31,0	32,7	35,9	0,633	0,298	0,486	1,417
Lutjanus guttatus	Palangre o espinel de fondo	LT	951	20,0	84,0	31,0	32,7	35,9	0,871	0,639	0,299	1,809
Lutjanus guttatus	Red de enmalle de encierro	LT	209	19,4	44,2	31,0	32,7	35,9	0,383	0,230	0,211	0,823

Ei-	Δ	Tipo de		Longi	tud (cm)	T	T	T	D 4	D	D	D-1:
Especie	Arte	longitud	n	Min.	Max.	Lm	Lopt	Lmega	Pmat	Pmega	Popt	PODj
Lutjanus guttatus	Red de enmalle fija	LT	524	19,0	82,5	31,0	32,7	35,9	0,714	0,483	0,303	1,500
Lutjanus guttatus	Red de enmalle de deriva	LT	4235	15,8	59,3	31,0	32,7	35,9	0,751	0,258	0,610	1,619
Lutjanus guttatus	Red de cerco artesanal o ruche	LT	442	24,4	51,2	31,0	32,7	35,9	0,767	0,303	0,647	1,717
Mugil cephalus	Red de enmalle de deriva	LT	121	10,3	63,4	37,3	39,7	43,6	0,000	0,000	0,000	0,000
Mugil cephalus	Red de enmalle fija	LT	269	19,9	41,9	37,3	39,7	43,6	0,000	0,000	0,000	0,000
Mugil cephalus	Red de arrastre	LT	133	17,8	43,2	37,3	39,7	43,6	0,000	0,000	0,000	0,000
Scomberomorus sierra	Red de enmalle camaronera	LH	5301	20,2	83,1	58,9	64,2	70,6	0,019	0,002	0,020	0,040
Scomberomorus sierra	Línea de mano	LH	2188	25,0	125,4	58,9	64,2	70,6	0,706	0,259	0,475	1,440
Scomberomorus sierra	Red de enmalle de deriva	LH	12339	20,6	97,5	58,9	64,2	70,6	0,040	0,007	0,041	0,088
Scomberomorus sierra	Red de enmalle de encierro	LH	378	22,2	66,8	58,9	64,2	70,6	0,008	0,000	0,013	0,021
Scomberomorus sierra	Red de enmalle fija	LH	2584	21,0	102,0	58,9	64,2	70,6	0,098	0,032	0,077	0,207
Scomberomorus sierra	Red de cerco artesanal o ruche	LH	2353	22,1	98,4	58,9	64,2	70,6	0,101	0,029	0,088	0,219
Scomberomorus sierra	Red de cerco Línea de mano correteo curricán o	LH	659	30,7	69,3	58,9	64,2	70,6	0,049	0,000	0,059	0,108
Thunnus albacares	trolling	LH	1308	43,0	155,6	120,0	135,8	149,4	0,006	0,001	0,004	0,011
Thunnus albacares	Línea de mano	LH	830	39,7	151,0	120,0	135,8	149,4	0,005	0,001	0,004	0,010
Thunnus albacares	Red de cerco artesanal o ruche	LH	136	50,0	95,5	120,0	135,8	149,4	0,000	0,000	0,000	0,000

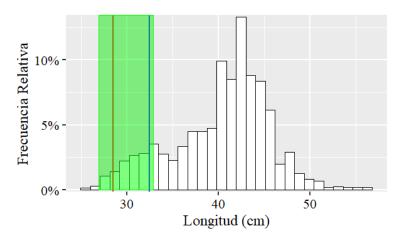


Figura 7. Estructura de longitudes de los individuos de *Cynoscion phoxocephalus* capturados con red de enmalle fija marina en el Pacífico durante el año 2021. Las cifras están en longitud total. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 2263.

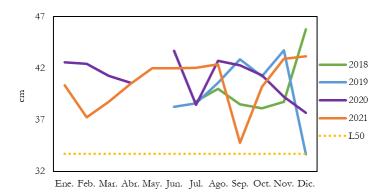


Figura 8. Variación mensual de la longitud media de captura de *Cynoscion phoxocephalus* con red de enmalle fija marina en el Pacífico entre 2018 y 2021. Las cifras están en longitud total. La longitud de madurez se indica con la línea segmentada. n = 2263.

En lo que respecta a la especie *Scomberomorus sierra*, las longitudes de captura con red de enmalle de deriva marina fluctuaron entre 9 y 97,5 cm LH. En el histograma de frecuencias de longitudes se evidencia que la mayoría de los individuos estuvieron por debajo del límite inferior del intervalo óptimo de captura (Figura 11). Durante los meses evaluados, la longitud promedio de captura fue inferior a la L_m (45 cm), a excepción de agosto/2020 y marzo/2021 (Figura 12). Previamente se ha alertado sobre la captura con diversos tipos de artes de pesca de un amplio intervalo de longitudes de esta especie, la mayoría por debajo de su L_m (Polo-Silva *et al.* 2017).

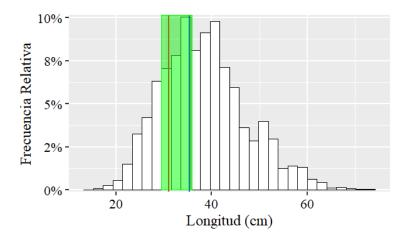


Figura 9. Estructura de longitudes de los individuos de *Lutjanus guttatus* capturados con línea de mano en el Pacífico durante el año 2021. Las cifras están en longitud total. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 5639.

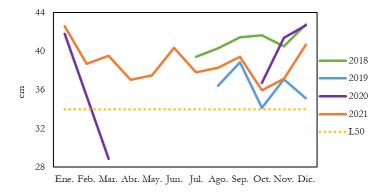


Figura 10. Variación mensual de la longitud media de captura de *Lutjanus guttatus* con línea de mano en el Pacífico entre 2018 y 2021. Las cifras están en longitud total. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1948, en 2019 112, en 2020 635 y en 2021 5639.

Figura 11. Estructura de longitudes de los individuos de *Scomberomorus sierra* capturados con red de enmalle de deriva marina en el Pacífico durante el año 2021. Las cifras están en longitud horquilla. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 12339.

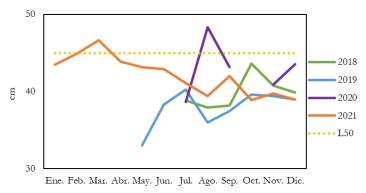


Figura 12. Variación mensual de la longitud media de captura de *Scomberomorus sierra* capturados con red de enmalle de deriva marina en el Pacífico entre 2018 y 2021. Las cifras están en longitud horquilla. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 2400, en 2019 278, en 2020 1633 y en 2021 12339.

3.3 CUENCA DEL RÍO MAGDALENA

3.3.1 Relaciones biométricas

Durante el período evaluado, se estimó la relación longitud-peso (RLP) de 16 especies (Tabla 6), con una variabilidad explicada (R^2) por los modelos de regresión lineal entre 77,6 % (*Triportheus magdalenae*) y 98,8 % (*Brycon moorei*). Cinco especies exhibieron crecimiento isométrico (b=3), cuatro presentaron crecimiento alométrico positivo (b>3) y las restantes crecimiento alométrico negativo (b<3).

3.3.2 Estructura de longitudes e indicadores basados en la longitud de madurez

Se analizó la estructura de longitudes de 11 especies capturadas con varios tipos de artes de pesca, lo que significó analizar 68 combinaciones especie-arte de pesca. La mayoría de los individuos analizados provinieron de las capturas efectuadas con redes de enmalle (fijas o de deriva), predominando en general las longitudes inferiores a la L_m . Solo Sorubim cuspicaudus registró más del 80% de longitudes superiores a la L_m , en tanto que este porcentaje fluctuó entre 60 y 80% para los individuos de Oreochromis niloticus capturados con chinchorra, chinchorro y red de enmalle fija, para los de Pimelodus grosskopfii capturados con chinchorro y calandrio y pafa los de Plagioscion magdalenae capturados con chinchorra y chinchorro.

Tabla 6. Relaciones longitud-peso de especies monitoreadas en la cuenca del Magdalena durante el año 2021. LE: Longitud estándar.

Especie	Tipo	n	\mathbb{R}^2	Long	itud (cm)	- a	I.C. 9	5 % a	- b	I.C. 9	5 % b	- Priorizada
Lispecie	long.	11	IX.	Mín.	Máx.	а	Inf.	Sup.	Ь	Inf.	Sup.	THOHZada
Ageneiosus pardalis	LE	577	0,978	19,8	62	0,009	0,008	0,01	3,086	3,048	3,124	Si
Brycon moorei	LE	138	0,988	17,2	58,5	0,011	0,009	0,013	3,217	3,156	3,278	Si
Caquetaia kraussii	LE	10965	0,916	8,3	22,4	0,062	0,06	0,065	2,81	2,794	2,826	Si
Cynopotamus magdalenae	LE	183	0,96	12,8	29,7	0,011	0,008	0,014	3,133	3,039	3,227	No
Hoplias malabaricus	LE	678	0,941	16,9	35,7	0,016	0,013	0,019	3,086	3,028	3,144	No
Ichthyoelephas longirostris	LE	119	0,967	21,2	49,7	0,027	0,019	0,038	2,905	2,807	3,004	No
Megaleporinus muyscorum	LE	4957	0,962	14,2	40,8	0,029	0,028	0,031	2,861	2,845	2,877	Si
Oreochromis niloticus	LE	2580	0,965	11,2	35,5	0,084	0,079	0,089	2,748	2,728	2,768	No
Pimelodus grosskopfii	LE	6120	0,925	13	37,4	0,015	0,014	0,017	3,047	3,025	3,069	Si
Pimelodus yuma	LE	2543	0,798	9,5	24,5	0,058	0,051	0,067	2,611	2,56	2,662	Si
Plagioscion magdalenae	LE	1168	0,972	14	56,8	0,015	0,014	0,016	3,063	3,033	3,093	Si
Prochilodus magdalenae	LE	32272	0,943	12,6	47,4	0,032	0,031	0,032	2,902	2,895	2,91	Si
Pseudopimelodus magnus	LE	537	0,981	16,5	60,5	0,02	0,017	0,022	3,029	2,993	3,064	No
Pseudoplatystoma magdaleniatum	LE	689	0,985	25,9	111,5	0,004	0,003	0,004	3,277	3,246	3,307	Si
Sorubim cuspicaudus	LE	1033	0,935	27,5	61,7	0,003	0,003	0,004	3,258	3,205	3,31	Si
Triportheus magdalenae	LE	4556	0,776	11,3	24,4	0,027	0,024	0,03	2,8	2,757	2,844	Si

Por su parte, los porcentajes de individuos capturados con redes de enmalle que registraron longitudes superiores a la L_m fueron en general bajos (0% - 40%), lo que sugiere la necesidad de regular el uso de tamaños de malla, para propiciar la captura de mayores longitudes. Por su parte, los métodos de pesca nasas de peces, red de encierro rastra, cóngolo y línea de mano presentaron porcentajes de individuos capturados por debajo de la longitud de madurez similares a los de las redes de enmalle (Tabla 7, ¡Error! No se encuentra el origen de la referencia. a Figura 15).

Solo en seis de los casos evaluados se registraron porcentajes de individuos en el rango óptimo de captura superiores al 50%. Dos de estos casos correspondieron a las capturas de *Pimelodus grosskopfii* con atarraya (¡Error! No se encuentra el origen de la referencia.) y chinchorro. P ara las especies *Prochilodus magdalenae* y *Sorubim cuspicaudus* estos porcentajes oscilaron entre 30% y 40% (¡Error! No se encuentra el origen de la referencia. y Figura 15), a excepción de *P rochilodus magdalenae* capturado con red de encierro rastra y atarraya rastra. En general, este indicador osciló entre 0,0% (*Caquetaia kraussii*-chinchorra) y 60% (*Pimelodus grosskopfii*-atarraya) (Tabla 7).

En general, las capturas de *Megaleporinus muyscorum* con la mayoría de métodos de pesca presentaron los valores más negativos de los tres indicadores, pues no superaron el 5 % en ninguno de los casos, lo que evidencia una probable situación de sobrepesca de este recurso, tanto de sobrepesca como de crecimiento (Tabla 7).

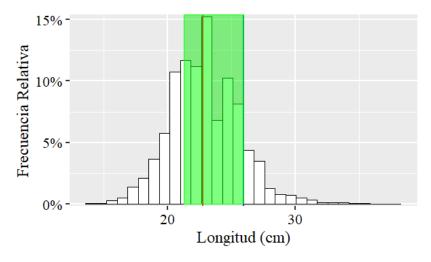


Figura 13. Estructura de longitudes de los individuos de *Pimelodus grosskopfii* capturados con atarraya en la cuenca del Magdalena durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 15645.

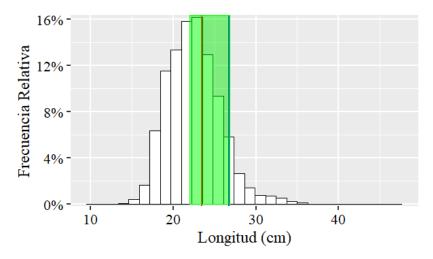


Figura 14. Estructura de longitudes de los individuos de *Prochilodus magdalenae* capturados con red de enmalle fija en la cuenca del Magdalena durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 102688.

Tabla 7. Análisis de la estructura de longitudes de especies monitoreadas en cuenca del Magdalena durante el año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{opt}), la longitud de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mai}) y L_{mega} (P_{mega}), así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}). LE: Longitud estándar.

E	A	The delen 1 1		Longit	ud (cm)	Τ	T	T	D	D	D	D-L'
Especie	Arte	Tipo de longitud	n	Min.	Max.	- Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
Caquetaia kraussii	Red de enmalle fija	LE	18755	7,3	24,3	17,9	18,3	20,1	0,026	0,005	0,057	0,088
Caquetaia kraussii	Atarraya	LE	325	10,8	26,9	17,9	18,3	20,1	0,068	0,018	0,089	0,175
Caquetaia kraussii	Chinchorra	LE	140	10,0	17,0	17,9	18,3	20,1	0,000	0,000	0,000	0,000
Caquetaia kraussii	Red de enmalle fija ciénaga	LE	365	9,4	17,5	17,9	18,3	20,1	0,000	0,000	0,000	0,000
Hoplias malabaricus	Red de enmalle fija	LE	8128	10,0	40,1	26,0	27,1	29,8	0,238	0,064	0,351	0,654
Hoplias malabaricus	Atarraya	LE	166	19,9	37,2	26,0	27,1	29,8	0,000	0,000	0,000	0,000
Ichthyoelephas longirostris	Atarraya	LE	200	21,2	49,7	42,0	45,0	49,5	0,070	0,010	0,090	0,170
Ichthyoelephas longirostris	Red de enmalle de deriva	LE	1355	14,2	60,3	42,0	45,0	49,5	0,068	0,004	0,092	0,163
Megaleporinus muyscorum	Red de enmalle fija	LE	7551	10,4	38,2	32,0	33,8	37,1	0,016	0,000	0,038	0,054
Megaleporinus muyscorum	Chinchorro	LE	1326	15,5	39,5	32,0	33,8	37,1	0,018	0,001	0,023	0,042
Megaleporinus muyscorum	Atarraya	LE	2010	15,0	40,6	32,0	33,8	37,1	0,082	0,003	0,158	0,243
Megaleporinus muyscorum	Red de enmalle de deriva	LE	1280	15,4	38,5	32,0	33,8	37,1	0,013	0,003	0,026	0,042
Megaleporinus muyscorum	Chinchorra	LE	3101	15,6	36,7	32,0	33,8	37,1	0,006	0,000	0,015	0,021
Megaleporinus muyscorum	Red de enmalle fija ciénaga	LE	826	14,7	30,0	32,0	33,8	37,1	0,000	0,000	0,000	0,000
Megaleporinus muyscorum	Nasas de Peces	LE	197	17,8	26,8	32,0	33,8	37,1	0,000	0,000	0,000	0,000
Megaleporinus muyscorum	Red de encierro rastra	LE	222	15,0	27,6	32,0	33,8	37,1	0,000	0,000	0,000	0,000
Megaleporinus muyscorum	Atarraya rastra	LE	132	15,0	31,6	32,0	33,8	37,1	0,000	0,000	0,000	0,000
Megaleporinus muyscorum	Red de enmalle fija río	LE	134	14,8	28,3	32,0	33,8	37,1	0,000	0,000	0,000	0,000
Oreochromis niloticus	Atarraya	LE	7721	11,2	50,2	18,6	19,1	21,0	0,890	0,706	0,256	1,852
Oreochromis niloticus	Red de enmalle fija	LE	4676	10,0	35,4	18,6	19,1	21,0	0,770	0,440	0,464	1,674
Oreochromis niloticus	Chinchorra	LE	1217	12,8	29,6	18,6	19,1	21,0	0,793	0,362	0,544	1,698
Oreochromis niloticus	Chinchorro	LE	2952	13,5	30,9	18,6	19,1	21,0	0,799	0,454	0,467	1,720
Oreochromis niloticus	Red de enmalle de encierro	LE	165	12,8	24,2	18,6	19,1	21,0	0,000	0,000	0,000	0,000
Oreochromis niloticus	Red de encierro rastra	LE	132	11,5	27,6	18,6	19,1	21,0	0,000	0,000	0,000	0,000
Pimelodus grosskopfii	Atarraya	LE	15645	13,9	37,8	22,8	23,6	26,0	0,512	0,120	0,625	1,257
Pimelodus grosskopfii	Cóngolo	LE	1670	10,5	34,2	22,8	23,6	26,0	0,218	0,110	0,192	0,520
Pimelodus grosskopfii	Red de enmalle de deriva	LE	135	14,2	35,2	22,8	23,6	26,0	0,000	0,000	0,000	0,000

Especie	Arte	Tipo de longitud	n		ud (cm)	- Lm	Lont	Lmega	Pmat	Pmega	Pont	Pobi
Lipecie	THE	Tipo de loligitad	11	Min.	Max.	12111	Борс	Linega	1 mac	Tinega	торс	100)
Pimelodus grosskopfii	Chinchorro	LE	457	18,5	33,7	22,8	23,6	26,0	0,615	0,337	0,501	1,453
Pimelodus grosskopfii	Chinchorra	LE	1997	12,2	34,9	22,8	23,6	26,0	0,529	0,267	0,439	1,235
Pimelodus grosskopfii	Palangre calandrio	LE	10120	11,5	40,5	22,8	23,6	26,0	0,730	0,490	0,341	1,561
Pimelodus grosskopfii	Nasas de Peces	LE	801	12,4	26,5	22,8	23,6	26,0	0,119	0,004	0,242	0,365
Pimelodus yuma	Red de enmalle fija	LE	10585	10,4	24,4	21,0	21,7	23,8	0,005	0,000	0,019	0,025
Pimelodus yuma	Atarraya	LE	3839	9,1	31,4	21,0	21,7	23,8	0,181	0,036	0,264	0,481
Pimelodus yuma	Nasas de Peces	LE	5172	10,4	27,3	21,0	21,7	23,8	0,063	0,012	0,086	0,161
Pimelodus yuma	Chinchorra	LE	4841	9,5	28,8	21,0	21,7	23,8	0,048	0,005	0,112	0,165
Pimelodus yuma	Chinchorro	LE	2581	10,9	25,6	21,0	21,7	23,8	0,001	0,000	0,005	0,006
Pimelodus yuma	Red de enmalle fija ciénaga	LE	2595	10,7	24,3	21,0	21,7	23,8	0,019	0,001	0,064	0,084
Pimelodus yuma	Cóngolo	LE	291	8,3	30,6	21,0	21,7	23,8	0,000	0,000	0,000	0,000
Pimelodus yuma	Atarraya chile	LE	300	14,0	27,1	21,0	21,7	23,8	0,000	0,000	0,000	0,000
Pimelodus yuma	Chinchorra nicurera	LE	114	12,0	21,1	21,0	21,7	23,8	0,000	0,000	0,000	0,000
Plagioscion magdalenae	Red de enmalle fija	LE	4310	13,5	56,8	27,9	29,2	32,1	0,410	0,270	0,212	0,892
Plagioscion magdalenae	Chinchorra	LE	424	19,0	61,9	27,9	29,2	32,1	0,849	0,717	0,144	1,710
Plagioscion magdalenae	Chinchorro	LE	2839	16,1	56,5	27,9	29,2	32,1	0,572	0,395	0,266	1,232
Plagioscion magdalenae	Red de enmalle fija ciénaga	LE	340	14,0	29,7	27,9	29,2	32,1	0,003	0,000	0,009	0,012
Plagioscion magdalenae	Atarraya	LE	667	20,0	61,2	27,9	29,2	32,1	0,943	0,729	0,241	1,913
Prochilodus magdalenae	Red de enmalle fija	LE	102688	10,5	47,4	23,5	24,4	26,8	0,346	0,083	0,460	0,889
Prochilodus magdalenae	Atarraya	LE	24367	11,3	44,4	23,5	24,4	26,8	0,337	0,191	0,268	0,796
Prochilodus magdalenae	Red de enmalle de deriva	LE	14392	13,0	42,3	23,5	24,4	26,8	0,342	0,101	0,463	0,906
Prochilodus magdalenae	Chinchorro	LE	7510	12,6	36,7	23,5	24,4	26,8	0,299	0,066	0,408	0,773
Prochilodus magdalenae	Chinchorra	LE	13314	12,6	39,8	23,5	24,4	26,8	0,400	0,149	0,428	0,976
Prochilodus magdalenae	Red de enmalle fija ciénaga	LE	12350	12,6	37,8	23,5	24,4	26,8	0,572	0,196	0,487	1,256
Prochilodus magdalenae	Atarraya rastra	LE	133	13,8	27,8	23,5	24,4	26,8	0,000	0,000	0,000	0,000
Prochilodus magdalenae	Red de encierro rastra	LE	206	14,0	25,0	23,5	24,4	26,8	0,000	0,000	0,000	0,000
Pseudoplatystoma magdaleniatum	Palangre calandrio	LE	553	30,5	115,0	79,0	87,4	96,2	0,472	0,051	0,439	0,962
Pseudoplatystoma magdaleniatum	Atarraya	LE	404	36,1	106,5	79,0	87,4	96,2	0,153	0,025	0,129	0,307
Pseudoplatystoma magdaleniatum	Red de enmalle fija	LE	456	18,9	98,1	79,0	87,4	96,2	0,055	0,002	0,055	0,112
Pseudoplatystoma magdaleniatum	Chinchorra	LE	1288	30,5	112,0	79,0	87,4	96,2	0,179	0,047	0,134	0,359
Pseudoplatystoma magdaleniatum	Chinchorro	LE	621	30,2	106,5	79,0	87,4	96,2	0,143	0,008	0,140	0,291
Pseudoplatystoma magdaleniatum	Red de enmalle de deriva	LE	1431	20,7	122,2	79,0	87,4	96,2	0,316	0,017	0,307	0,640

Especie	Arte	Tipo de longitud	n	Longit Min.	ud (cm) Max.	Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
Pseudoplatystoma magdaleniatum	Línea de mano	LE	180	33,4	101,1	79,0	87,4	96,2	0,233	0,039	0,194	0,467
	Red de enmalle de deriva mallona	LE	298	51,6	86,4	79,0	87,4	96,2	0,228	0,000	0,248	0,477
Sorubim cuspicaudus	Atarraya	LE	539	23,5	66,6	37,0	39,3	43,3	0,826	0,438	0,445	1,709
Sorubim cuspicaudus	Línea de mano	LE	1578	30,1	65,7	37,0	39,3	43,3	0,941	0,634	0,333	1,908
Sorubim cuspicaudus	Palangre calandrio	LE	2801	29,0	72,8	37,0	39,3	43,3	0,925	0,672	0,287	1,885
Sorubim cuspicaudus	Red de enmalle fija	LE	1203	19,2	59,5	37,0	39,3	43,3	0,754	0,406	0,404	1,564
Sorubim cuspicaudus	Chinchorro	LE	1749	27,2	63,5	37,0	39,3	43,3	0,864	0,508	0,423	1,795
Sorubim cuspicaudus	Chinchorra	LE	2160	27,3	67,9	37,0	39,3	43,3	0,911	0,552	0,417	1,880
Sorubim cuspicaudus	Red de enmalle de deriva	LE	978	29,9	64,5	37,0	39,3	43,3	0,969	0,735	0,255	1,959

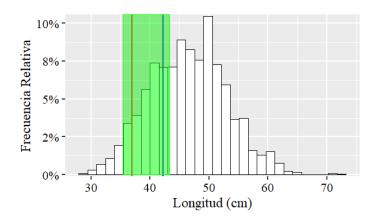


Figura 15. Estructura de longitudes de los individuos de *Sorubim cuspicaudus* capturados con calandrio en la cuenca del Magdalena durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 2801.

En lo referente a la especie *Pimelodus grosskopfii*, durante el año 2021 los individuos capturados con atarraya no evidenciaron fluctuaciones mensuales en las longitudes promedio de captura. La tendencia mensual predominante fue la de una longitud promedio mayor que la Lm (23 cm) con excepción de los meses de junio y agosto (Figura 16). De forma similar, el MADR-CCI (2008) reporta una longitud media de captura de 22,5 cm para el año 2007, mientras que De la Hoz-M et al. (2015) informan que esta longitud para el año 2015 fue de 19,9 cm. De otro lado, los promedios históricos del período 2018-2020 evidencian un comportamiento oscilante (Figura 17).

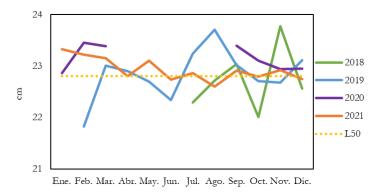


Figura 16. Variación mensual de la longitud media de captura de *Pimelodus grosskopfii* capturados con atarraya en la cuenca del Magdalena entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 14118, en 2019 17440, en 2020 12520 y en 2021 15645.

Con relación a la especie *Prochilodus magdalenae*, sus longitudes de captura con red de enmalle fija fluctuaron entre 10,1 y 47,4 cm LE durante el período 2018-2021. La prevalencia de longitudes promedio de captura mensuales inferiores a la L_m permite inferir una fuerte presión pesquera sobre individuos pequeños e inmaduros, lo que implica la probabilidad de una sobrepesca de crecimiento de este recurso. Sin embargo, las cifras del segundo semestre de 2018 muestran longitudes promedio de captura marginalmente mayores que la L_m (Figura 17). No obstante, Valderrama *et al.*, (2011) y Mojica *et al.*, (2012) señalan que actualmente esta es una de las especies con mayor grado de vulnerabilidad, debido a la tendencia descendente en sus longitudes medias de captura.

Las longitudes promedio de captura de *Sorubim cuspicaudus* con calandrio durante el período 2018-2021 fueron superiores a su longitud de madurez (39 cm), lo cual indica que la presión pesquera ejercida sobre este recurso permite a los individuos alcanzar tamaños adecuados para completar sus ciclos de reproducción (Figura 18). Estos resultados son consistentes con los reportados por MADR-CCI (2006) y Jiménez-Segura *et al.* (2009), los cuales afirman que el mayor porcentaje de individuos maduros se observa durante los meses de abril, mayo y noviembre.

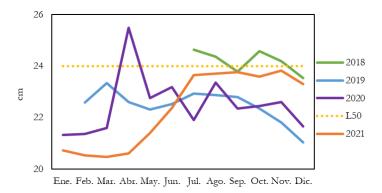


Figura 17. Variación mensual de la longitud media de captura de *Prochilodus magdalenae* capturados con red de enmalle fija en la cuenca del Magdalena entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 32994, en 2019 29669, en 2020 43330 y en 2021 102688.

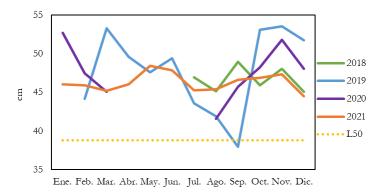


Figura 18. Variación mensual de la longitud media de captura de *Sorubim cuspicaudus* capturados con calandrio en la cuenca del Magdalena entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 2962, en 2019 3499, en 2020 1991 y en 2021 2801.

3.4 CUENCA DEL RÍO SINÚ

3.4.1 Relaciones biométricas

Para el año 2021 se estimó la relación longitud-peso (RLP) de dos especies: *Caquetaia kraussii* y *Sorubim cuspicaudus*. Para la primera la variabilidad del peso explicada por la longitud estándar fue del 86,8% para y para la segunda 97,5%. Acorde con los intervalos de confianza de *b*, *C. kraussii* presentó crecimiento alométrico negativo (b<3), mientras que *S. cuspicaudus* mostró un crecimiento alométrico positivo (b>3) (Tabla 8).

Tabla 8. Relaciones longitud-peso de dos especies monitoreadas en la cuenca del Sinú durante el año 2021. LE: Longitud estándar.

Especie	Tipo		R ² -	Longit	ud (cm)		I.C. 9	5 % a	- b	I.C. 9	5 % b	- Priorizada
Especie	long.	n	K	Mín.	Máx.	а	Inf.	Sup.	D	Inf.	Sup.	1 HOHZada
Caquetaia kraussii	LE	7152	0,868	8,6	17	0,154	0,145	0,163	2,462	2,44	2,484	No
Sorubim cuspicaudus	LE	163	0,975	28,1	71,5	0,005	0,004	0,007	3,141	3,063	3,22	Si

3.4.2 Estructura de longitudes e indicadores basados en la longitud de madurez

Se analizó la estructura de longitudes de siete especies con dos tipos de artes de pesca, lo que dio lugar a 12 combinaciones especie-arte de pesca. Los artes de pesca evaluados fueron la red de

enmalle (fija y de encierro) y la atarraya. En seis de los casos evaluados el porcentaje de individuos capturados con longitudes superiores a la L_m fue inferior al 10%; sólo el 20% de los individuos de C. kraussii capturados con red de enmalle fija fueron superiores a la L_m , mientras que para las capturas de P. magdalenae con red de enmalle fija y atarraya estos porcentajes fueron de 30% y 40%, respectivamente, resultados que evidencian una mayor presión pesquera sobre los inmaduros por parte de estas pesquerías. Solo S. cuspicandus capturado con red de enmalle fija presentó un porcentaje mayoritario de individuos con longitudes superiores a la L_m (80%) (Tabla 9).

En más de la mitad de los casos la proporción de longitudes de captura comprendidas dentro del rango óptimo de captura fue insignificante. Solo P. magdalenae capturado con atarraya y red de enmalle fija y S. cuspicandus capturado con red de enmalle presentaron una fracción relativamente alta de este indicador ($\geq 50\%$). Similar comportamiento presentó el porcentaje de megadesovadores, pues en la gran mayoría de los casos no se presentaron capturas de ellos, en contraste con las capturas de P. magdalenae con atarraya ($P_{opt}=10\%$) y de S. cuspicandus con red de enmalle fija ($P_{opt}=40\%$) (Tabla 9). Las longitudes de captura de P. magdalenae con red de enmalle fija fluctuaron entre 12,5 y 36 cm LE, con un promedio de 22,4 cm LE, inferior a los 23,2 cm LE reportados por Valderrama y Solano (2004), pero similar a la reportada (22,1 cm LE) por MADR-CCI (2009) para esta especie en el Sinú, quienes además indican que por ser la principal especie de interés comercial en esta cuenca podría estar siendo sometida a una mayor presión que otras especies de la cuenca (¡Error! No se encuentra el origen de la referencia.).

En la ¡Error! No se encuentra el origen de la referencia. se puede observar el caso de *Cyphocharax m* agdalenae capturada con atarraya, donde se evidencia que todos los individuos reportados estuvieron por debajo de la longitud media de madurez, con longitudes entre 8,4 y 13,1 cm LE, el promedio fue de 10,2 cm LE, inferior a las longitudes reportadas por Blanco *et al.*, (2005) (12,0 cm LE) y Lasso *et al.*, (2011) (15,5 cm LE), evidenciando el alto impacto de esta pesquería para esta especie.

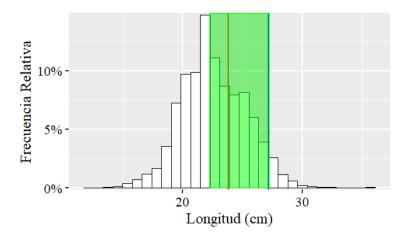


Figura 19. Estructura de longitudes de los individuos de *Prochilodus magdalenae* capturados con red de enmalle fija en la cuenca del Sinú durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. El número de individuos medidos fue 12728.

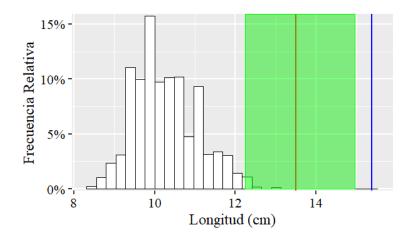


Figura 20. Estructura de longitudes de los individuos de *Cyphocharax magdalenae* capturados con atarraya en la cuenca del Sinú durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. El número de individuos medidos fue 1927.

Tabla 9. Análisis de la estructura de longitudes de especies monitoreadas en cuenca del Sinú durante el año 2021. Se indican la longitud de madurez (L_m) , la longitud óptima de captura (L_{opt}) , la longitud de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mai}) y L_{mega} (P_{mega}) , así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}) . LE: Longitud estándar.

Е :	Λ .	TT: 1 1 1 1 1		Longit	ud (cm)	т	т ,	т	D .	D	D .	D 1:
Especie	Arte	Tipo de longitud	n	Min.	Max.	Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
Caquetaia kraussii	Red de enmalle fija	LE	11485	8,6	24,7	15,6	15,8	17,4	0,237	0,008	0,388	0,633
Caquetaia kraussii	Atarraya	LE	484	9,2	15,0	15,6	15,8	17,4	0,000	0,000	0,000	0,000
Cyphocharax magdalenae	Red de enmalle fija	LE	4805	8,2	16,4	13,5	13,6	15,0	0,197	0,019	0,453	0,668
Cyphocharax magdalenae	Atarraya	LE	1927	8,4	13,1	13,5	13,6	15,0	0,000	0,000	0,007	0,007
Cyphocharax magdalenae	Red de enmalle de encierro	LE	661	8,4	11,6	13,5	13,6	15,0	0,000	0,000	0,000	0,000
Hoplias malabaricus	Red de enmalle fija	LE	1654	13,6	30,0	27,1	28,3	31,2	0,010	0,000	0,024	0,034
Megaleporinus muyscorum	Red de enmalle fija	LE	572	14,8	33,6	32,0	33,8	37,1	0,002	0,000	0,003	0,005
Oreochromis niloticus	Red de enmalle fija	LE	150	13,8	23,0	18,6	19,1	21,0	0,393	0,067	0,620	1,080
Prochilodus magdalenae	Red de enmalle fija	LE	12728	12,5	36,0	23,8	24,7	27,2	0,313	0,048	0,459	0,820
Prochilodus magdalenae	Atarraya	LE	3079	12,6	34,6	23,8	24,7	27,2	0,368	0,062	0,551	0,981
Sorubim cuspicaudus	Red de enmalle fija	LE	538	23,5	71,5	37,0	39,3	43,3	0,810	0,374	0,509	1,693
Sorubim cuspicaudus	Atarraya	LE	129	28,1	70,4	37,0	39,3	43,3	0,000	0,000	0,000	0,000

Durante el período 2018-2021 el intervalo de longitudes de captura de *Cyphocharax magdalenae* con atarraya fue de 8,4-13,1 cm LE. Durante el periodo evaluado, la longitud promedio de captura mensual fue inferior a la longitud de madurez brindando indicios de sobrepesca por crecimiento, lo cual significa un riesgo elevado para la sostenibilidad de la especie en la cuenca, toda vez que se ha evidenciado reducciones en su fecundidad y sensibilidad a la sobrepesca (Galvis y Mojica, 2007), el año 2021 fue el que presentó menor variación de longitudes, con un promedio de 10,2, menor que los promedios de longitudes de años precedentes (Figura 21).

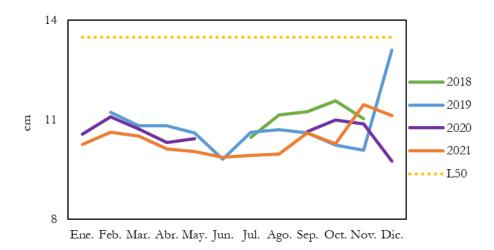


Figura 21. Variación mensual de la longitud media de captura de *Cyphocharax magdalenae* capturados con atarraya en la cuenca del Sinú entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1447, en 2019 3224, en 2020 1212 y en 2021 1927.

Durante el período 2018-2021 las longitudes de captura de *Prochilodus magdalenae* con redes de enmalle fija se ubicaron en el intervalo 12,5-36 cm LE. La longitud promedio de captura permaneció por debajo de la longitud de madurez (24 cm LE), excepto en agosto de 2019, cuando se evidenció la captura de ejemplares ligeramente más grandes, lo que coincide con el periodo de reproducción que se inicia con las lluvias (marzo-abril) y se prolonga hasta el final del primer periodo de aguas altas (julio-agosto) (Valderrama y Solano 2004). Los promedios de longitudes reportadas no presentaron un amplio rango de variación entre años, con una mínima de 20,5 cm LE en el 2021 y una máxima de 25,5 cm LE en 2020 (Figura 22).

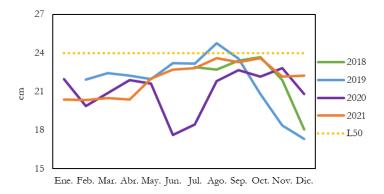


Figura 22. Variación mensual de la longitud media de captura de *Prochilodus magdalenae* capturados con red de enmalle fija en la cuenca del Sinú entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 11003, en 2019 6913, en 2020 6140 y en 2021 12728.

3.5 ORINOQUÍA

3.5.1 Relaciones biométricas

Para esta cuenca se estimó la relación longitud-peso de cuatro especies (Tabla 10). El coeficiente de determinación (R^2) varió entre 0,799 (*Mylossoma albiscopum*) y 0,983 (*P. orinocoense*). Con base en los intervalos de confianza del parámetro b, es posible afirmar que las especies M. albiscopum y P. brachypomus presentaron un crecimiento alométrico negativo (b<3) y las restantes alométrico positivo (b>3).

Tabla 10. Relaciones longitud-peso de seis especies monitoreadas en la Orinoquía durante el año 2021. LE: Longitud estándar, LH: Longitud horquilla.

Especie	Tipo	n	\mathbb{R}^2	Longit	ud (cm)	- а	I.C. 9	5 % a	b	I.C. 95	5 % b	- Priorizada
Especie	long.	11	IX	Mín.	Máx.	а	Inf.	Sup.	D	Inf.	Sup.	THOHZada
Mylossoma albiscopum	LE	510	0,799	17,1	34,2	0,063	0,043	0,092	2,87	2,745	2,996	Si
Piaractus brachypomus	LE	106	0,847	21,9	62,1	0,571	0,278	1,171	2,272	2,085	2,46	No
Prochilodus mariae	LE	488	0,962	16,5	41,2	0,021	0,017	0,024	3,082	3,027	3,136	Si
Pseudoplatystoma metaense	LH	201	0,976	41,4	120,3	0,007	0,005	0,009	3,115	3,046	3,183	Si
Pseudoplatystoma orinocoense	LH	321	0,983	38,8	117,5	0,008	0,006	0,009	3,07	3,025	3,114	Si
Zungaro zungaro	LE	155	0,978	50,2	135,5	0,014	0,01	0,02	3,096	3,023	3,17	Si

3.5.2 Estructura de longitudes e indicadores basados en la longitud de madurez

Se analizó la estructura de longitudes de once especies con varios tipos de artes de pesca, lo que significó el estudio de 44 combinaciones especie-arte de pesca, considerando como criterio de selección un n mínimo de 100 datos. Los tipos de artes de pesca evaluados fueron la atarraya, el chinchorro, la línea de mano, el palangre calandrio y la red de enmalle (fija o de deriva), siendo este último tipo de arte el de mayor ocurrencia en el muestreo de las longitudes (45%), seguido por el chinchorro y el palangre calandrio, con 25% y 13%, respectivamente (Tabla 11). Del total de casos analizados, las especies *Brachyplatystoma juruense* (Red de enmalle de deriva), *Pinirampus pirinampu* (red de enmalle de deriva) y *Prochilodus mariae* (red de enmalle fija) registraron los mayores porcentajes (≥40%) de individuos maduros capturados. Porcentajes inferiores de este indicador se registraron para un total de 41 combinaciones de especie-arte de pesca (Tabla 11).

Los valores más negativos del indicador P_{mat} correspondieron a las siguients combinaciones especie-arte: Brachyplatystoma juruense (palangre calandrio, red de enmalle fija, chinchorro) Brachyplatystoma platynemum (red de enmalle fija, red de enmalle de deriva, chinchorro), B. vaillantii (chinchorro, red de enmalle fija), Hydrolicus armatus (palangre calandrio, red de enmalle fija), Piaractus brachypomus (atarraya, red de enmalle de deriva, chinchorro), P. pirinampu (chinchorro), Plagioscion squamosissimus (atarraya, chinchorro), P. metaense (atarraya, chinchorro, red de enmalle fija), Pseudoplatystoma orinocoense (red de enmalle de deriva) y Z. zungaro (chinchorro). Estos resultados sugieren una alta presión por pesca hacia los individuos juveniles en estas especies (Tabla 11).

Se analizó la estructura de longitudes de captura de *Mylossoma albiscopum* con línea de mano, *Prochilodus mariae* con red de enmalle fija y *Zungaro zungaro* con red de enmalle fija. Las longitudes de captura de *M. albiscopum* con línea de mano (n=295) oscilaron entre 14 y 29,6 cm LE, siendo el 91,3% de estas longitudes inferior a la *L*_m de la especie (25,6 cm LE) (Figura 23). Por su parte, las longitudes de captura con red de enmalle fija de *P. mariae* (n=2289) se ubicaron en el intervalo 15,7-46,2 cm LE, siendo el 56,5% de estas longitudes inferior a la *L*_m de la especie (27,2 cm LE) (Figura 24). En lo que respecta a *Z. zungaro* capturado con red de enmalle fija (n=558), el intervalo de longitudes de captura fue 31,4-146,2 cm LE, correspondiendo el 85,5 % a longitudes

inferiores a la L_m de la especie (117,1 cm LE) (Figura 25).

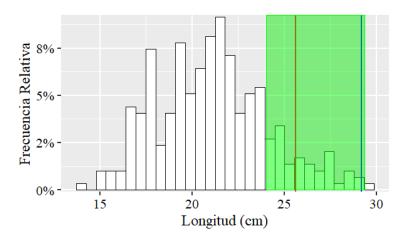


Figura 23. Estructura de longitudes de los individuos de *Mylossoma albiscopum* capturados con línea de mano en la Orinoquía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 295.

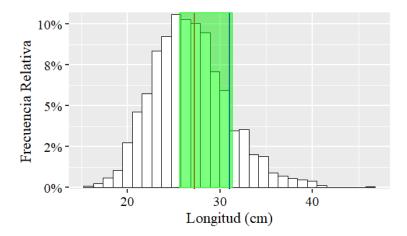


Figura 24. Estructura de longitudes de los individuos de *Prochilodus mariae* capturados con red de enmalle fija en la Orinoquía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 2289.

Tabla 11. Análisis de la estructura de longitudes de especies monitoreadas en la Orinoquía durante el año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{opt}), la longitud de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mat}) y L_{mega} (P_{mega}), así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}). LE: Longitud estándar, LH: Longitud horquilla.

Б .	Λ.,	T' 1 1 ' 1		Longit	ud (cm)	т	т.	т	D .	D	D :	D 1:
Especie	Arte	Tipo de longitud	n	Min.	Max.	- Lm	Lopt	Lmega	rmat	Pmega	Popt	Pobj
Brachyplatystoma juruense	Palangre calandrio	LH	102	31,3	80,7	63,0	68,9	75,8	0,000	0,000	0,000	0,000
Brachyplatystoma juruense	Red de enmalle fija Red de enmalle de	LH	188	43,5	76,5	63,0	68,9	75,8	0,000	0,000	0,000	0,000
Brachyplatystoma juruense	deriva	LH	598	43,6	78,6	63, 0	68,9	75,8	0,468	0,007	0,508	0,983
Brachyplatystoma juruense	Chinchorro	LH	142	45,9	73,9	63,0	68,9	75,8	0,000	0,000	0,000	0,000
Brachyplatystoma platynemum	Red de enmalle fija	LH	540	45,6	96,8	87,0	96,8	106,5	0,037	0,000	0,037	0,074
Brachyplatystoma platynemum	Palangre calandrio Red de enmalle de	LH	434	52,3	95,7	87,0	96,8	106,5	0,053	0,000	0,053	0,106
Brachyplatystoma platynemum	deriva	LH	1143	26,5	116,5	87,0	96,8	106,5	0,038	0,002	0,037	0,077
Brachyplatystoma platynemum	Chinchorro	LH	793	49,6	96,1	87,0	96,8	106,5	0,024	0,000	0,024	0,048
Brachyplatystoma vaillantii	Red de enmalle fija	LH	304	31,0	78,3	50,0	54, 0	59,4	0,273	0,069	0,286	0,628
Brachyplatystoma vaillantii	Palangre calandrio Red de enmalle de	LH	1665	21,4	82,4	50,0	54, 0	59,4	0,136	0,034	0,130	0,300
Brachyplatystoma vaillantii	deriva	LH	728	28,9	80,1	50,0	54, 0	59,4	0,190	0,084	0,137	0,411
Brachyplatystoma vaillantii	Chinchorro	LH	376	32,5	64,2	50,0	54, 0	59,4	0,000	0,000	0,000	0,000
Hydrolycus armatus	Palangre calandrio	LE	196	24,9	98,7	42,7	45,7	50,3	0,000	0,000	0,000	0,000
Hydrolycus armatus	Red de enmalle fija	LE	137	34,9	98,7	42,7	45,7	50,3	0,000	0,000	0,000	0,000
Piaractus brachypomus	Palangre calandrio	LE	161	24,0	62,7	56,0	60,9	66,9	0,124	0,000	0,168	0,292
Piaractus brachypomus	Red de enmalle fija Red de enmalle de	LE	426	19,4	70,1	56,0	60,9	66,9	0,108	0,012	0,115	0,235
Piaractus brachypomus	deriva	LE	285	11,9	68,2	56, 0	60,9	66,9	0,000	0,000	0,000	0,000
Piaractus brachypomus	Chinchorro	LE	356	21,9	67,2	56,0	60,9	66,9	0,000	0,000	0,000	0,000
Piaractus brachypomus	Atarraya	LE	469	22,4	69,2	56,0	60,9	66,9	0,023	0,004	0,023	0,051
Pinirampus pirinampu	Palangre calandrio	LH	1010	27,5	81,4	57,4	62,5	68,7	0,306	0,040	0,301	0,647

Essais	Δ	71		Longi	tud (cm)	T	T '	T	D	D	D	D-F.
Especie	Arte	Tipo de longitud	n	Min.	Max.	Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
Pinirampus pirinampu	Red de enmalle fija Red de enmalle de	LH	371	29,5	77,6	57,4	62,5	68,7	0,189	0,019	0,221	0,429
Pinirampus pirinampu	deriva	LH	367	34, 0	87,4	57,4	62,5	68,7	0,398	0,063	0,390	0,850
Pinirampus pirinampu	Chinchorro	LH	205	34,5	80,6	57,4	62,5	68,7	0,000	0,000	0,000	0,000
Plagioscion squamosissimus	Atarraya Red de enmalle de	LE	107	15,6	54,2	20,0	20,6	22,6	0,000	0,000	0,000	0,000
Plagioscion squamosissimus	deriva	LE	142	16,0	55,4	20,0	20,6	22,6	0,000	0,000	0,000	0,000
Prochilodus mariae	Red de enmalle fija	LE	2289	15,7	46,2	27,2	28,5	31,3	0,411	0,128	0,445	0,984
Prochilodus mariae	Atarraya Red de enmalle de	LE	3569	15,5	39,1	27,2	28,5	31,3	0,274	0,081	0,342	0,697
Prochilodus mariae	deriva	LE	481	16,5	38,1	27,2	28,5	31,3	0,062	0,010	0,121	0,193
Prochilodus mariae	Chinchorro	LE	706	16,5	37,2	27,2	28,5	31,3	0,254	0,091	0,263	0,608
Pseudoplatystoma metaense	Red de enmalle fija	LH	1059	1,0	122,6	107,0	120,3	132,4	0,022	0,000	0,020	0,042
Pseudoplatystoma metaense	Palangre calandrio Red de enmalle de	LH	1170	32, 0	126,3	107,0	120,3	132,4	0,094	0,000	0,082	0,176
Pseudoplatystoma metaense	deriva	LH	921	39,9	140,6	107,0	120,3	132,4	0,113	0,002	0,099	0,214
Pseudoplatystoma metaense	Atarraya	LH	135	37,5	126,8	107,0	120,3	132,4	0,000	0,000	0,000	0,000
Pseudoplatystoma metaense	Chinchorro	LH	288	43,5	123,7	107,0	120,3	132,4	0,000	0,000	0,000	0,000
Pseudoplatystoma orinocoense	Atarraya	LH	776	35,6	109,6	81,5	90,4	99,4	0,103	0,023	0,080	0,206
Pseudoplatystoma orinocoense	Red de enmalle fija	LH	1645	32,3	116,7	81,5	90,4	99,4	0,106	0,014	0,095	0,215
Pseudoplatystoma orinocoense	Línea de mano	LH	568	37,7	114,8	81,5	90,4	99,4	0,183	0,048	0,143	0,373
Pseudoplatystoma orinocoense	Palangre calandrio	LH	2416	30,4	122,5	81,5	90,4	99,4	0,228	0,046	0,184	0,459
Pseudoplatystoma orinocoense	Chinchorro Red de enmalle de	LH	722	40,2	105,3	81,5	90,4	99,4	0,078	0,015	0,064	0,157
Pseudoplatystoma orinocoense	deriva Red de enmalle de	LH	387	34,6	122,4	81,5	90,4	99,4	0,000	0,000	0,000	0,000
Zungaro zungaro	deriva	LE	622	42,8	150,0	117,1	132,3	145,6	0,206	0,002	0,161	0,368
Zungaro zungaro	Palangre calandrio	LE	343	24,6	152,9	117,1	132,3	145,6	0,055	0,003	0,044	0,102
Zungaro zungaro	Red de enmalle fija	LE	558	31,4	146,2	117,1	132,3	145,6	0,186	0,002	0,131	0,319
Zungaro zungaro	Chinchorro	LE	263	40,2	123,7	117,1	132,3	145,6	0,000	0,000	0,000	0,000

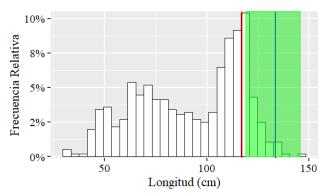


Figura 25. Estructura de longitudes de los individuos de *Zungaro zungaro* capturados con red de enmalle fija en la Orinoquía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 558.

Se analizaron también las variaciones en los promedios mensuales de las longitudes de captura durante el período 2018-2021, para varias combinaciones especie-arte. Las longitudes de captura de M. albiscopum con línea de mano oscilaron entre 14 cm y 29,6 cm LE, lo que coincide con el intervalo de captura 18,0-24,6 cm LE registrado en diferentes sectores de la Orinoquía previamente (Gil-Manrique et al. 2011). De otro lado, las longitudes promedio de captura mensuales se mantuvieron inferiores a la L_m (25,6 cm LE). Las menores longitudes promedio de captura de esta especie ocurrieron durante el período julio-septiembre entre 2018 y 2020 y durante los meses de enero, abril y noviembre del año 2021, lo que sugiere posibles picos de reclutamiento en tales meses (Figura 26).

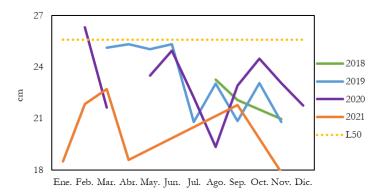


Figura 26. Variación mensual de la longitud media de captura de *Mylossoma albiscopum* con línea de mano en la Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 309, en 2019 280, en 2020 1027 y en 2021 295.

Durante el período 2018-2021 las longitudes promedio de captura con atarraya de *Prochilodus mariae* a nivel mensual oscilaron entre 15,5 cm y 39,1 cm LE. En general, durante los años 2018, 2020 y 2021 estas longitudes estuvieron por debajo de la L_m (31 cm LE); solo en enero de 2021 se registró una longitud promedio igual a la L_m , mientras que en 2019 los promedios mensuales del período abril-junio fueron cercanos o mayores que la L_m (Figura 27). En lo que respecta a las longitudes de captura de *P. mariae* con red de enmalle fija, los promedios mensuales variaron entre 22 y 31 cm LE, pero durante los cuatro años las longitudes se mantuvieron por debajo de la L_m , excepto en diciembre de 2018 y septiembre de 2020, meses en que alcanzaron el valor de la L_m . Lo anterior evidencia que la atarraya ejerce un menor impacto sobre los individuos pequeños de *P. mariae*, en comparación con la red de enmalle fija, lo que a su vez denota una fuerte presión pesquera de este tipo de arte sobre individuos inmaduros de esta especie (Ramírez-Gil *et al.*, 2011) (Figura 28).

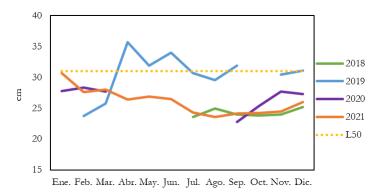


Figura 27. Variación mensual de la longitud media de captura de *Prochilodus mariae* con atarraya en la Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos 2021 fue 2457.

En el caso de Z. zungaro capturado con chinchorro, durante el período 2018-2021 ninguna longitud promedio mensual superó su L_m (117,1 cm LE). Solo la longitud promedio registrada en diciembre de 2021 con red de enmalle fija alcanzó la longitud de madurez. En general, las longitudes promedio de captura de Z. zungaro con estos dos tipos de artes se ubicaron en el intervalo 57-122 cm LE (Figura 29 y Figura 30). Esta estructura de longitudes de captura se ha mantenido desde 2005 en diferentes puntos de la Orinoquia, con predominio de individuos pequeños, lo que hace necesario implementar estrategias de manejo que reduzcan las capturas de juveniles. Para ello debe tenerse en cuenta que la estructura de longitudes de esta especie

guarda relación con los sectores del río, siendo generalmente mayor la proporción de individuos de longitudes grandes en su cabecera (Ramírez-Gil y Ajiaco-Martínez, 2011).

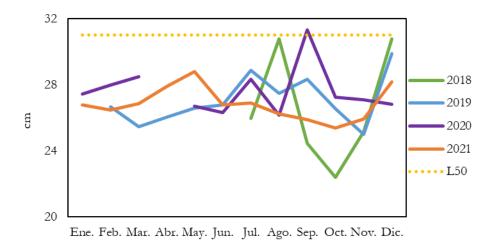


Figura 28. Variación mensual de la longitud media de captura de *Prochilodus mariae* con red de enmalle fija en la Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 198, en 2019 fue 987, en 2020 804 y en 2021 1823.

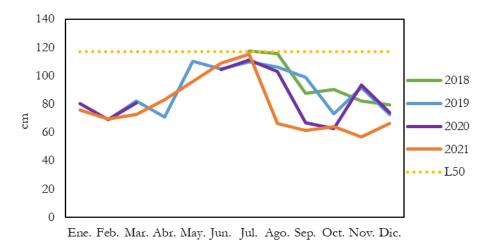


Figura 29. Variación mensual de la longitud media de captura de *Zungaro zungaro* con Chinchorro en la Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. La longitud de madurez se indica con la línea segmentada. n = 151.

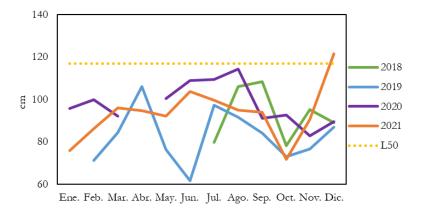


Figura 30. Variación mensual de la longitud media de captura de *Zungaro zungaro* con red de enmalle fija en la Orinoquía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 325, en 2019 965, en 2020 889 y en 2021 498.

3.6 CUENCA DEL RÍO ATRATO

3.6.1 Relaciones biométricas

A pesar de que durante el 2021 se realizó el monitoreo biológico-pesquero de las principales especies capturadas por la pesca artesanal en esta cuenca (*Prochilodus magdalenae*, *Megaleporinus muyscorum*, *Caquetaia kraussii* y *Hoplias malabaricus*, entre otras), sólo las muestras de *C. kraussii* y *H. malabaricus* cumplieron con las características necesarias para la estimación de los parámetros de la relación entre longitud-peso. La ecuación que describe esta relación para *C. kraussii* fue W=0,193LT^{2,483} (R²=0,761; n=139), con longitudes comprendidas entre 15,3 y 23,7 cm LE, en tanto que para *H. malabaricus* esta relación estuvo modelada por la ecuación W=0,018LT^{3,039} (R²=0,807; n=242), con un rango de longitudes entre 20,5 y 39,8 cm LE. De acuerdo con el intervalo de confianza del parámetro *b*, el crecimiento de *C. kraussii* fue alométrico negativo (I.C. 95% = 2,248 - 2,718), mientras que para *H. malabaricus* fue isométrico (b=3,039; I.C. 95% = 2,85 - 3,228).

3.6.2 Estructura de longitudes e indicadores basados en la longitud de madurez

Se analizó la estructura de longitudes de cinco especies capturadas con red de enmalle (fija y deriva). P. magdalenae capturada con red de enmalle de deriva registró el menor porcentaje de individuos con longitudes superiores a su L_m (< 10%). Ageneiosus pardalis y P. magdalenae

capturados con red de enmalle fija también presentaron porcentajes bajos de longitudes superiores a la L_m (40%), mientras que para Caquetaia kraussii, Megaleporinus muyscorum y Hoplias malabaricus capturadas con el mismo arte este indicador registró un valor de 90% (Tabla 12Figura 12). Por tanto, es viable concluir que en esta cuenca la pesquería de redes de enmalle no afecta de manera significativa las estructuras de tamaño de C. kraussii, M. muyscorum y H. malabaricus, en contraste con lo registrado para A. pardalis y P. magdalenae (Tabla 12).

En cuanto a los porcentajes de longitudes comprendidas dentro del intervalo óptimo de captura, en el caso de las capturas con redes de enmalle fija *A. pardalis, C. kraussii* y *H. malabaricus* presentaron los menores valores (30%), en tanto que *P. magdalenae* y *M. muyscorum* registraron valores cercanos al 50%. De otro lado, el porcentaje de megadesovadores osciló entre 10% (*P. magdalenae*) y 70% (*H. malabaricus*) (Tabla 12Figura 12 y Figura 31 a Figura 33).

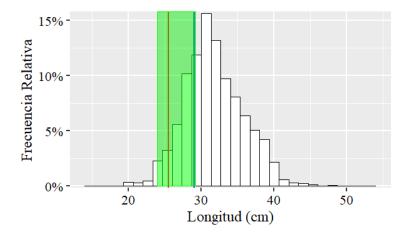


Figura 31. Estructura de longitudes de los individuos de *Hoplias malabaricus* capturados con red de enmalle fija en la cuenca del río Atrato durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 10801.

Tabla 12. Análisis de la estructura de longitudes de especies monitoreadas en cuenca del río Atrato durante el año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{opt}), la longitud de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mal}) y L_{mega} (P_{mega}), así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}). LE: Longitud estándar.

г :	Α	T' 1 1 '. 1		Longit	ud (cm)	т	т.	т	ъ .	D	D .	D 1:
Especie	Arte	Tipo de longitud	n	Min.	Max.	- Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
Ageneiosus pardalis	Red de enmalle fija	LE	3335	14,0	228,0	32,3	34,1	37,5	0,425	0,213	0,278	0,917
Ageneiosus pardalis	Línea de mano	LE	113	19,5	71,5	32,3	34,1	37,5	0,000	0,000	0,000	0,000
Caquetaia kraussii	Red de enmalle fija	LE	4308	9,5	35,1	15,0	15,2	16,7	0,857	0,606	0,312	1,775
Hoplias malabaricus	Red de enmalle fija	LE	10801	15,2	53,9	25,5	26,6	29,2	0,947	0,737	0,239	1,924
Megaleporinus muyscorum	Red de enmalle fija	LE	3632	18,2	47,1	25,5	26,6	29,2	0,888	0,469	0,500	1,857
Prochilodus magdalenae	Red de enmalle fija	LE	40832	12,6	52,1	24,8	25,8	28,4	0,349	0,142	0,450	0,941
Prochilodus magdalenae	Red de enmalle de deriva	LE	108	24,4	31,1	24,8	25,8	28,4	0,000	0,000	0,000	0,000

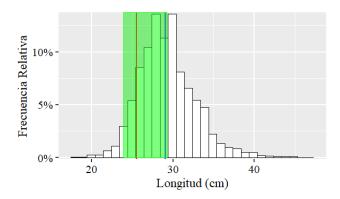


Figura 32. Estructura de longitudes de los individuos de *Megaleporinus muyscorum* capturados con red de enmalle fija en la cuenca del río Atrato durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 3632.

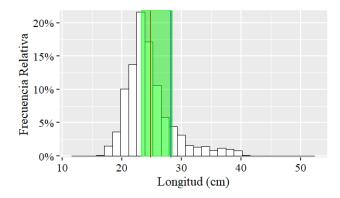


Figura 33. Estructura de longitudes de los individuos de *Prochilodus magdalenae* capturados con red de enmalle fija en la cuenca del río Atrato durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 40832.

Durante el período 2018-2021, *Hoplias malabaricus* presentó longitudes promedio de captura superiores a su L_m (26 cm LE), siendo evidente la ocurrencia de mayores longitudes durante el segundo semestre del año, donde se observan valores superiores a los informados por Lasso *et al.* (2011). Durante el año 2021 se han presentado las mayores longitudes promedio de captura de esta especie (Figura 34). En efecto, durante ese año se registró una longitud promedio de 31,6 cm LE 2021, valor superior al promedio reportado por Mosquera (2006, en: Lasso *et al.*, 2011) (19 cm LE) y al informado por MADR-CCI (2007, 2008, 2009) para esta cuenca (30 cm LE).

En síntesis, para esta especie se registró una situación ampliamente favorable para la sostenibilidad del recurso, desde el punto de vista de la estructura de longitudes explotadas por las pesquerías de redes de enmalle.



Figura 34. Variación mensual de la longitud media de captura de *Hoplias malabaricus* capturados con red de enmalle fija en la cuenca del río Atrato entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 2908, en 2019 11878, en 2020 11081 y en 2021 10801.

Similar a lo ocurrido el año anterior con los datos obtenidos para esta especie en el marco del SEPEC, las longitudes promedio de captura de *M. muyscorum* con red de enmalle fija evaluadas entre 2018 y 2021, se mantuvieron inferiores a la longitud de madurez (32 cm LE), con un rango de longitudes registradas de 23,9 cm a 31,6 cm LE. Para el 2021 las longitudes fueron variables, encontrándose la mínima en marzo (27,4 cm LE) y la máxima en diciembre (31,6 cm LE). Aunque en 2020 y 2021 se presentaron longitudes superiores a las de los años precedentes, siguen siendo menores que la longitud de madurez, lo que implica la posibilidad de una sobrepesca de crecimiento de esta especie ocasionada por la pesquería de redes de enmalle (Figura 35).

Durante los monitoreos efectuados en el período 2018-2021 las longitudes de captura de P. magdalenae con red de enmalle fija variaron entre 19,5 cm y 25,8 cm LE. Las longitudes promedio de captura hasta el 2020 se mantuvieron inferiores a la longitud de madurez (24 cm LE), indicando que se capturaban principalmente ejemplares inmaduros, lo que ratifica la alerta presentada previamente sobre este recurso en la cuenca del Atrato (Mojica et al., 2012). En el 2021 se presentó un incremento en las longitudes medias de captura, con valores superiores a la L_m durante los períodos enero-mayo y octubre-diciembre, mientras que durante el período junio-

septiembre se evidenció poca variación en estos valores, los cuales fueron similares a la L_m (24,0 - 24,3 cm LE). La longitud promedio anual del año 2021 (24,7 cm LE) fue inferior a la reportada por Roa-Cubillos y Villa-Navarro (2019). En 2018, 2019 y 2020 la longitud promedio de captura registró un incremento durante los meses de noviembre y diciembre, coincidiendo con el inicio de la época reproductiva de esta especie (Jaramillo-Villa y Jiménez-Segura, 2008) (Figura 36).

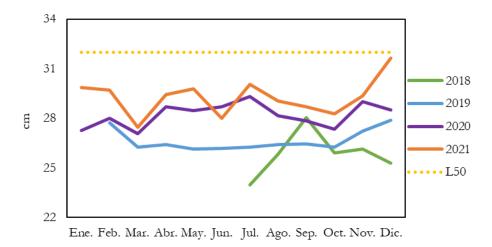


Figura 35. Variación mensual de la longitud media de captura de *Megaleporinus muyscorum* capturados con red de enmalle fija en la cuenca del río Atrato entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1899, en 2019 6187, en 2020 3608 y en 2021 3632.

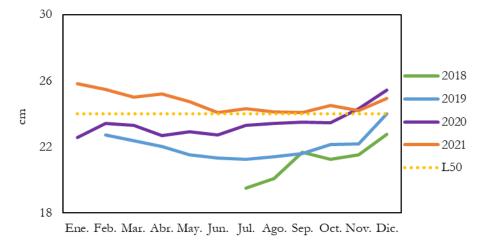


Figura 36. Variación mensual de la longitud media de captura de *Prochilodus magdalenae* capturados con red de enmalle fija en la cuenca del Río Atrato entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 9773, en 2019 34131, en 2020 28200 y en 2021 40832.

3.7 AMAZONÍA

3.7.1 Relaciones biométricas

Los parámetros de la relación longitud-peso fueron estimados para siete especies de la Amazonía colombiana. El coeficiente de determinación (R^2) vario entre 0,783 para *Prochilodus rubrotaeniatus* y 0,965 para *Zungaro zungaro*. El parámetro b de la regresión mostró un crecimiento isométrico (b=3) únicamente en el caso de la especie *Brachyplatystoma rousseauxii* (b=2,925; I.C. 95% = 2,798 - 3,072); las restantes especies presentaron un crecimiento alométrico negativo (b<3) (Tabla 13).

Tabla 13. Relaciones longitud-peso de especies monitoreadas en cuenca Amazonía durante el año 2021. LE: Longitud estándar, LH: Longitud horquilla.

Espais	Tipo		R ²	Longit	ud (cm)		I.C. 9	5 % a	l,	I.C. 9	5 % b	Duio nimo do
Especie	long.	n	K-	Mín.	Máx.	- a	Inf.	Sup.	Ъ	Inf.	Sup.	- Priorizada
Brachyplatystoma platynemum	LH	106	0,947	43,1	106,6	0,769	0,511	1,157	1,973	1,882	2,064	No
Brachyplatystoma rousseauxii	LH	181	0,909	71	136,6	0,022	0,012	0,041	2,935	2,798	3,072	Si
Brycon melanopterus	LE	101	0,811	15,1	33,2	0,271	0,142	0,518	2,191	1,98	2,402	No
Prochilodus rubrotaeniatus	LE	1329	0,783	16,9	36,4	0,634	0,534	0,752	1,948	1,893	2,003	No
Pseudoplatystoma punctifer	LH	819	0,955	35,1	117,5	0,019	0,016	0,023	2,861	2,818	2,903	Si
Pseudoplatystoma tigrinum	LH	258	0,918	55,9	131,4	0,071	0,046	0,108	2,565	2,471	2,659	Si
Zungaro zungaro	LE	200	0,965	49,6	160	0,043	0,031	0,061	2,843	2,767	2,919	No

3.7.2 Estructura de longitudes e indicadores basados en la longitud de madurez

Se evaluaron las longitudes de captura de tres especies con seis tipos de artes de pesca, lo que generó ocho combinaciones especie-arte de pesca. Los tipos de arte de pesca evaluados fueron red de enmalle (deriva y fija), atarraya, palangre o calandrio, línea de mano y arpón. El menor porcentaje de individuos registrados con tamaños superiores a la L_m correspondió a las capturas de *Prochilodus nigricans* con red de enmalle de deriva y *Pseudoplatystoma punctifer* con arpón, que tuvieron menos de 1% de individuos maduros, generando un alto impacto en los individuos inmaduros (Tabla 14).

En las capturas de *P. nigricans* con atarraya y red de enmalle fija se registró un 50% de individuos maduros, mientras que en las de *P. punctifer* con línea de mano y palangre calandrio el porcentaje de maduros fue del 70% y 60%, respectivamente. El único caso en que se registró un 100% de

individuos maduros correspondió a las capturas de *Brycon amazonicus* con red de enmalle fija, dado que todas las longitudes fueron superiores a su L_m (26,6 cm LE) (Tabla 14). Esto refleja el menor impacto de este tipo de arte de pesca sobre la fracción de individuos inmaduros de estas poblaciones.

En lo referente a las capturas de *B. amazonicus* con red de enmalle fija, se muestrearon 1206 individuos con longitudes que fluctuaron entre 22,1 y 55,1 cm LE, de los cuales apenas 123 individuos (10,2%) registraron longitudes inferiores a la *L*_m (32 cm LE), siendo mayoritaria la proporción de longitudes situadas por encima del rango óptimo de captura (Figura 37). En cuanto a las capturas de *P. nigricans* con redes de enmalle fijas, se muestrearon un total de 2732 individuos cuyas longitudes oscilaron entre 17,7 y 44,8 cm LE. El 51,8% de estas longitudes se ubicaron por debajo de la longitud de madurez (25,1 cm LE) (Figura 38). De otro lado, se muestrearon un total de 372 individuos de *Z. zungaro* capturados con palangre o calandrio, con longitudes ubicadas en el intervalo 44,5-150 cm LE. El 93,3% de estas longitudes se situó por debajo de la longitud de madurez (127 cm LE); incluso casi la totalidad de las longitudes de captura de esta especie se ubicó por debajo del intervalo óptimo de captura de la especie (130-160 cm LE) (Figura 39).

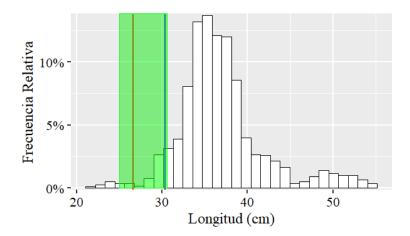


Figura 37. Estructura de longitudes de los individuos de *Brycon amazonicus* capturados con red de enmalle fija en la cuenca Amazonía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 1206.

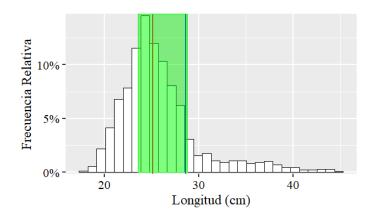


Figura 38. Estructura de longitudes de los individuos de *Prochilodus nigricans* capturados con red de enmalle fija en la cuenca Amazonía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 2732.

El análisis comparativo entre las longitudes medias de captura (LMC) durante el período 2018-2021 se realizó para *B. amazonicus* capturado con red de enmalle fija, *P. nigricans* capturado con atarraya y red de enmalle fija y *Z. zungaro* capturado con palangre calandrio. La red de enmalle fija es considerada como el arte principal para la captura de *B. amazonicus* (Bernal y Cala 1997), cuya muestra de longitudes se ubicó en el intervalo 31-43 cm LE. Todos los individuos superaron la longitud de madurez durante los diferentes años evaluados (excepto en agosto de 2018). Durante el año 2021 se pudo evidenciar la disminución de las longitudes promedio desde febrero hasta septiembre. Usma y Morales-Betancourt (2011) reportan que anteriormente la especie era registrada como *Brycon* sp., taxón que en realidad reunía a dos especies, por lo que no se tienen registros previos de longitudes de la especie (Figura 40).

En el caso de las capturas de P. nigricans con atarraya, los individuos muestreados presentaron longitudes de 23 cm a 30 cm LE. Durante los cuatro años evaluados no se registraron capturas con este arte en abril y mayo. Las longitudes muestreadas durante el período 2018-2020 se ubicaron cerca o por encima de la L_m , pero de junio a octubre del año 2021 fueron inferiores a la L_m (Figura 41). En lo que respecta a las capturas de P. nigricans con red de enmalle fija, las longitudes muestreadas se ubicaron en el intervalo 21-28 cm LE; durante el 2021 las longitudes registradas de enero a junio y de octubre a diciembre fueron superiores a la L_m (25,1 cm LE), mientras que de julio a septiembre fueron inferiores (Figura 42). Los tamaños de captura tanto con atarraya como con red de enmalle fueron similares a los reportados por Camacho et al., (2006) y MADR-CCI (2009, 2010).

Tabla 14. Análisis de la estructura de longitudes de especies monitoreadas en cuenca del Amazonas durante el año 2021. Se indican la longitud de madurez (L_m), la longitud óptima de captura (L_{opt}), la longitud de megareproductores (L_{mega}) y la proporción de longitudes de captura superiores a L_m (P_{mat}) y L_{mega} (P_{mega}), así como el porcentaje de longitudes en el rango óptimo de captura (P_{Lopt}). LE: Longitud estándar, LH: Longitud horquilla.

Especie	Arte	Tipo de longitud	n	Longitud (cm)		Τ	T+	T	Dt	D	D	Dob:
				Min.	Max.	Lm	Lopt	Lmega	Pmat	Pmega	Popt	Pobj
Brycon amazonicus	Red de enmalle fija	LE	1206	22,1	55,1	26,6	27,8	30,6	0,985	0,935	0,055	1,975
Prochilodus nigricans	Red de enmalle fija	LE	2732	17,7	44,8	25,1	26,1	28,8	0,469	0,148	0,559	1,176
Prochilodus nigricans	Red de enmalle de deriva	LE	242	17,8	27,9	25,1	26,1	28,8	0,000	0,000	0,000	0,000
Prochilodus nigricans	Atarraya	LE	809	19,3	39,6	25,1	26,1	28,8	0,518	0,106	0,629	1,253
Pseudoplatystoma punctifer	Palangre calandrio	LH	1880	44,6	115,3	68,5	75,2	82,8	0,645	0,265	0,410	1,320
Pseudoplatystoma punctifer	Línea de mano	LH	493	27,7	117,5	68,5	75,2	82,8	0,724	0,489	0,247	1,460
Pseudoplatystoma punctifer	Red de enmalle fija	LH	635	35,1	115,7	68,5	75,2	82,8	0,535	0,328	0,239	1,102
Pseudoplatystoma punctifer	Arpón	LH	141	46,4	113,0	68,5	75,2	82,8	0,000	0,000	0,000	0,000

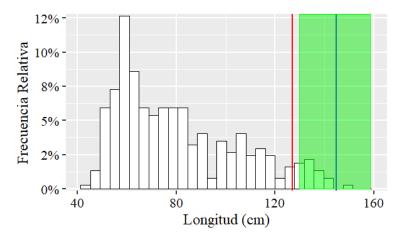


Figura 39. Estructura de longitudes de los individuos de *Zungaro zungaro* capturados con palangre o calandrio en la cuenca Amazonía durante el año 2021. Las cifras están en longitud estándar. La línea roja indica la longitud de madurez, la línea azul la longitud de megareproductores y la franja verde el rango de longitud óptima de captura. n = 372.

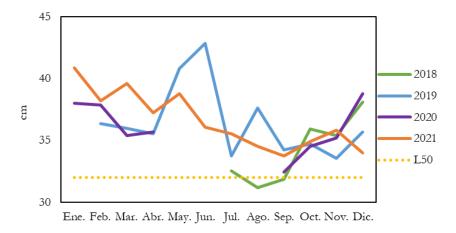


Figura 40. Variación mensual de la longitud media de captura de *Brycon amazonicus* capturados con red de enmalle fija en la cuenca Amazonía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 856, en 2019 557, en 2020 874 y en 2021 1206.

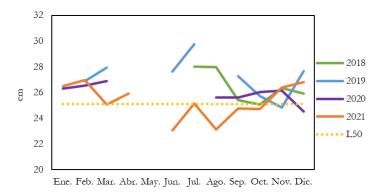


Figura 41. Variación mensual de la longitud media de captura de *Prochilodus nigricans* capturados con atarraya en la cuenca Amazonía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos 2021 fue 809.

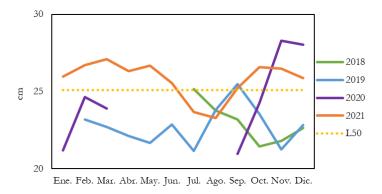


Figura 42. Variación mensual de la longitud media de captura de *Prochilodus nigricans* capturados con red de enmalle fija en la cuenca Amazonía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1465, en 2019 1613, en 2020 844 y en 2021 2732.

La longitud promedio de captura con calandrio de *Zungaro zungaro* (64 cm LE) fue menor a la L_m (127 cm LE) durante todos los años evaluados (2018-2021). Durante el período 2019-2020 la longitud promedio de captura se mantuvo entre 65 cm y 81 cm LE, pero durante los meses de marzo a mayo del 2021 se capturaron individuos más grandes (longitud promedio entre 98 y 106 cm LE), registrándose incluso ocho individuos con longitudes entre 136,2 y 150 cm LE, tamaños similares a las reportadas en los años 90 (135 cm a 151 cm LE) por Sánchez-Páez *et al.* (2011) (Figura 43).

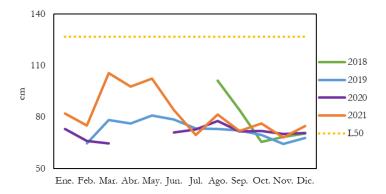


Figura 43. Variación mensual de la longitud media de captura de *Zungaro zungaro* capturados con calandrio en la cuenca Amazonía entre 2018 y 2021. Las cifras están en longitud estándar. La longitud de madurez se indica con la línea segmentada. El número de individuos medidos en 2018 fue 1465, en 2019 1613, en 2020 844 y en 2021 372.

4 REFERENCIAS

Agudelo, E., Ajiaco, R.E., Alvarez, L.E., Barreto, C.G., Borda, C.A., Bustamante, C.C., Caldas, J.P., Diazgranados, M.C., De La Hoz, J., Melo, G., Perucho, E., Puentes, V., Ramirez, A., Ramírez, A., Rueda, M., Salinas, J.C. y Zapata, L.A. 2011. Protocolo de captura de información pesquera, biológica y socio-económica en Colombia. Ministerio de Agricultura y Desarrollo Rural - Dirección de Pesca y Acuicultura- Subgerencia de Pesca y Acuicultura INCODER - Conservación Internacional, 80 p.

Altamar, J., L. Manjarrés-Martínez, L.O. Duarte, F. Cuello & F. Escobar-Toledo. (2015). ¿Qué tamaños deberíamos pescar? Autoridad Nacional de Acuicultura y Pesca (AUNAP)- Universidad del Maldalena, Santa Marta.

Altamar, J., L. Manjarrés-Martínez, L.O. Duarte, F. Cuello, y F. Escobar-Toledo, F. 2015. ¿Qué tamaños deberíamos pescar? Autoridad Nacional de Acuacultura y Pesca (AUNAP) – Universidad del Magdalena, Santa Marta. 48pp.

Anderson R.O., Neumann R.M. 1996. Length, Weight, and Associated Structural Indices, Pp. 447-481. In: Murphy B.E. and Willis D.W. (eds.) Fisheries Techniques, second edition. American

Fisheries Society.

Azevedo, J.W.de J., A.C.L. de Castro, H.L.R. Porto and P.R.S. Lima, 2010. Size and age at first maturity of the crucifix sea catfish, *Sciades proops* (Valenciennes, 1840) (Siluriformes: Ariidae), caught off western Maranhão state, Brazil. Arq. Ciên. Mar 43(2):96-102.

Bagenal, T.B. y Tesch F.W. 1978. Age and growth. En: Bagenal T.B. (Ed.). Methods for assessment of fish production in fresh waters. IBP Handbook No. 3. Oxford, England: Blackwell Scientific Publications, pp 01-136.

Barbieri, G. (1989). Dinâmica da reprodução e crescimento de Hoplias malabaricus (Bloch, 1794) (Osteichthyes, Erythrinidae) da represa do Monjolinho, São Carlos/SP. Revista Brasileira de Zoologia, 6(2), 225-233.

Bernal, J. H. y Cala. P. (1997). Composición de la dieta alimenticia del yamu, Brycon siebenthalae (Pisces: Characidae), en la parte media del río Guayabero, sistema del alto río Guaviare, Colombia. Dahlia 2: 55-63.

Butterworth DS, Johnston SJ, Brandao A. 2010. Pretesting the Likely Efficacy of Suggested Management Approaches to Data-Poor Fisheries. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 2:131–145.

Caicedo, J.A., L.A. Zapata, M.X. Zorrilla, B. Castillo y P.A. Rojas. 2015. Plan de manejo del ensamblaje de peces demersales de importancia pesquera del Parque Nacional Natural Gorgona y su zona de influencia. Parques Nacionales Naturales y WWF-Colombia. Cali. 82 p.

Camacho K. Alonso, J. C. Cipamocha, J. C. Agudelo, E. Sanchez, C. L. Freitas, A. Gaya, R. y Moya, L. A. (2006). Estructura de tamaños y aspectos reproductivos del recurso pesquero aprovechado en la frontera colombo-peruana del rio Putumayo. Pp. 47-58. En: Agudelo, E. Alonso, J.C. y Moya, L. A. (Eds.). Perspectivas para el ordenamiento de la pesca y la acuicultura en el área de integración fronteriza colombo – peruana. Instituto Amazónico de Investigaciones

Científicas SINCHI - Instituto Nacional de Desarrollo del Perú. Bogotá.

Cope, J.M. y A.E. Punt. 2009. Length-Based Reference Points for Data-Limited Situations: Applications and Restrictions. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 1: 169–186.

Correa-Herrera, T., & Jiménez-Segura, L. F. (2013). Biología reproductiva de *Lutjanus guttatus* (Perciformes: Lutjanidae) en el parque nacional natural Utría, Pacífico colombiano. Revista de Biología Tropical, 61(2), 829-840.

De la Hoz J., Duarte L.O., Manjarrés-Martínez L. 2015. Aspectos biológico-pesqueros de especies capturadas en aguas marinas y continentales de Colombia. Relaciones biométricas e indicadores basados en longitudes. Autoridad Nacional de Acuicultura y Pesca, Bogotá, 36 p.

De la Hoz-M J, Duarte LO, Manjarrés-Martínez L. Aspectos biológico-pesqueros de especies capturadas en aguas marinas y continentales de Colombia. Relaciones biométricas e indicadores basados en tallas. Informe técnico. Bogotá: Autoridad Nacional de Acuicultura y Pesca-AUNAP; 2015. p.18.

Escobar, R. J., M. Zarate, M. Valderrama, C. Lara y C. Fonseca. 1983. Longitudes mínimas y medias de maduración para catorce especies ícticas de interés comercial de la Cuenca Magdalénica. Revista Divulgación Pesquera 21 (2): 24.

Froese, R. 2004. Keep it simple: three indicators to deal with overfishing. Fish and Fisheries 5, 86–91.

Froese, R., Binohlan, C. 2000. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology 56, 758–773.

Galvis, G. and Mojica, J.I. 2007. The Magdalena River fresh water fishes and fisheries. Aquatic

Ecosystem Health & Management, 10(2):127–139 pp.

Gassman, J., López-Rojas, H., Padrón, D. 2017. Reproducción de los róbalos Centropomus undecimalis y C. ensiferus (Perciformes: Centropomidae) en una laguna costera tropical. Rev. Biol. Trop. Vol. 65(1): 181-194 pp.

Gil-Manrique, B. Pineda, I. Ramírez-Gil, H. Rodríguez, C. Ajiaco-Martínez, R. E. Agudelo, E. Acosta – Santos, A. y González-Cañon, G. (2010). Mylossoma duriventre: Characidae. Capítulo 7. Pp. 229-235. En: Lasso, C. A., E. Agudelo Córdoba, L. F. Jiménez-Segura, H. Ramírez-Gil, M. Morales-Betancourt, R. E. Ajiaco-Martínez, F. de Paula Gutiérrez, J. S. Usma, S. E. Muñoz Torres y A. I. Sanabria Ochoa (Eds.). I. Catálogo de los recursos pesqueros continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia.

Gómez Rodríguez, S. (2017). Biología reproductiva, captura por unidad de esfuerzo y estacionalidad de Trichiurus lepturus (Linnaeus, 1758) (Trichiuridae: Teleostei) en la Bahía de Gaira, Caribe de Colombia. Tesis Biología Marina, Universidad de Bogotá Jorge Tadeo Lozano, Bogotá.

Gómez-Ortiz M.G., López-Navarrete H., Arteaga-Peña R., Balderas-Telles J. y Acosta-Barbosa G. (2015). Parámetros poblacionales, biológicos y pesqueros de robalo blanco Centropomus undecimalis del sur de Tamaulipas y norte de Veracruz, México. Ciencia Pesquera 23(2): 45-57.

Jaramillo-Villa, U. y L. Jiménez-Segura. 2008. Algunos aspectos biológicos de la población de Prochilodus magdalenae en las cienagas de Tumarado (rio Atrato), Colombia. Actualidades Biológicas 30 (88): 55-66.

Jiménez, L., Palacio, J., & López, R. 2009. Características biológicas del blanquillo (sorubim cuspicaudus) littmnann, burr y nass, 2000 y bagre rayado(pseudoplatystoma magdaleniatum)

buitrago-suárez y burr, 2007 (siluriformes: pimelodidae) relaciones con su reproducción en la cuenca media. Actual Biol, 31(90), 53-66.

Lasso, C. A., E. Agudelo Córdoba, L. F. Jiménez-Segura, H. Ramírez-Gil, M. Morales-Betancourt, R. E. Ajiaco-Martínez, F. de Paula Gutiérrez, J. S. Usma Oviedo, S. E. Muñoz Torres y A. I. Sanabria Ochoa (Editores). 2011. I. Catálogo de los recursos pesqueros continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia, 715 pp.

Le Cren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca avescens). Journal of Animal Ecology 20, 201-219.

Lévêque, C., 1997. Biodiversity dynamics and conservation. The freshwater fish of tropical Africa. Cambridge University Press, Cambridge.

Manjarrés, L., Arévalo, J.C., Rodríguez, D.J. Gómez P. 2004. Dinámica poblacional y manejo del stock de pargo rayado (Lutjanus synagris) (Linnaeus, 1758) de La Guajira (Caribe colombiano). En: Manjarrés L. (ed.) Pesquerías demersales del área norte del mar Caribe de Colombia y parámetros biológico-pesqueros y poblacionales del recurso pargo. INPA, Colciencias, Universidad del Magdalena, Santa Marta, 317 p.

Mármol, D., E. Viloria & J. Blanco. 2010. Efectos de la pesca sobre la biología reproductiva de la lisa Mugil incilis(Picses: Mugilidae) en la Ciénaga Grande de Santa Marta, Caribe Colombiano. Bol. Invest. Mar. Cost., 39(2): 215-231.

Marrugo, C., Altamar, J. y Duarte L.O. 2016. Tamaño Óptimo de Malla para la Captura Artesanal de Cojinoa Negra Caranx crysos con redes de Enmalle. Proceedings of the Gulf and Caribbean Fisheries Institute 68: 501.

Mejía, L.S. y A. Acero. (Eds.). 2002. Libro rojo de peces marinos de Colombia. INVEMAR,

Instituto de Ciencias Naturales-Universidad Nacional de Colombia, Ministerio de Medio Ambiente. La serie Libros rojo de especies amenazadas de Colombia. Bogotá, Colombia. 174pp. En: La serie de libros Rojos de Especies Amenazadas de Colombia. Bogotá, INVEMAR, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia y Ministerio de Medio Ambiente. 151 p.

Ministerio de Agricultura y Desarrollo Rural – MADR, Corporación Colombia Internacional – CCI. 2008. Pesca y Acuicultura Colombia 2007 Informe Tecnico Regional Cuencas del Magdalena, Sinú y Atrato. Corporación Colombia Internacional. Bogotá, Colombia. 88 pp.

Ministerio de Agricultura y Desarrollo Rural – MADR, Corporación Colombia Internacional – CCI. (2009). Pesca y Acuicultura Colombia 2008 Informe Técnico Regional Cuencas del Orinoco y Amazonas. Corporación Colombia Internacional. Bogotá, Colombia. 64 pp.

Ministerio de Agricultura y Desarrollo Rural – MADR, Corporación Colombia Internacional – CCI. 2010. Pesca y Acuicultura Colombia 2009 Informe Tecnico Regional Cuencas del Magdalena, Sinú y Atrato. Corporación Colombia Internacional. Bogotá, Colombia. 76 pp.

Ministerio de Agricultura y Desarrollo Rural – MADR, Corporación Colombia Internacional – CCI. (2010). Pesca y Acuicultura Colombia 2009. Corporación Colombia Internacional. Bogotá, Colombia. 70 pp.

Mojica JI, Valderrama M, Barreto C, Álvarez-León R. Prochilodus magdalenae. En: Mojica JI, Usma JS, Álvarez-León R, Lasso CA, editores. Libro rojo de peces dulceacuícolas de Colombia 2012. Bogotá DC: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF Colombia, Universidad de Manizales; 2012. p. 154-159.

Mojica, J. I.; J. S. Usma; R.Álvarez-León y C. A. Lasso (Eds). 2012. Libro rojo de peces dulceacuícolas de Colombia 2012. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF

Colombia y Universidad de Manizales. Bogotá, D. C., Colombia, 319 pp.

Olaya-Nieto CW, Brú-Cordero S B, Segura-Guevara F F, Tordecilla-Petro G. 2004. Estimación de los parámetros biológicos básicos de peces comerciales del río Sinú – Fase I. Informe final. Laboratorio de Investigación Biológico Pesquera-LIBP. Documento de trabajo, Universidad de Córdoba, Lorica.

Pauly D. 1984. Fish population dynamics in tropical waters: A manual for use with programmable calculators.

Peña I.I. 2003. Aspectos reproductivos y ecología trófica de *Lutjanus argentiventris*, *Lutjanus guttatus* y *Brotula clarkae* en el parque Nacional Gorgona (Pacífico colombiano). Trabajo de grado. Biologo mención en biología marina. Universidad del Valle, Cali.

Pilling GM, Apostolaki P, Failler P, Floros C, Large PA, Morales-Nin B, Reglero P, Stergiou KI, Tsikliras AC. 2008. Assessment and management of data-poor fisheries. In: A Payne, J Cotter, T Potter (eds) Advances in Fisheries science: 50 years on from Beverton and Holt, pp. 280-305. Blackwell Publishing, CEFAS.

Polo-Silva, C.J., Mejía-Falla, P.A., Zapata, L.A., Tavera, J.J., y Muñoz-Lasso, O.F. 2017. Scomberomorus sierra. 319-322 pp. En: Chasqui V., L., A. Polanco F., A. Acero P., P.A. Mejía-Falla, A. Navia, L.A. Zapata y J.P. Caldas. (Eds.). 2017. Libro rojo de peces marinos de Colombia. Instituto de Investigaciones Marinas y Costeras Invemar, Ministerio de Ambiente y Desarrollo Sostenible. Serie de Publicaciones Generales de INVEMAR # 93. Santa Marta, Colombia. 552 p

Ramírez-Gil y Ajiaco-Martínez (2010). Zungaro zungaro: Pimelodidae. Cuenca del Orinoco. Capítulo 7. Pp. 535-536.. En: Lasso, C. A., E. Agudelo Córdoba, L. F. Jiménez-Segura, H. Ramírez-Gil, M. Morales-Betancourt, R. E. Ajiaco-Martínez, F. de Paula Gutiérrez, J. S. Usma, S. E. Muñoz Torres y A. I. Sanabria Ochoa (Eds.). I. Catálogo de los recursos pesqueros continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales

de Colombia. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogota, D. C., Colombia.

Ramírez-Gil, H. Ajiaco-Martínez, R. Barreto-Reyes, C. y Valderrama. M. (2010). Prochilodus mariae: Prochilodontidae. Capítulo 7. Pp. 312-316. En: Lasso, C. A., E. Agudelo Córdoba, L. F. Jiménez-Segura, H. Ramírez-Gil, M. Morales- Betancourt, R. E. Ajiaco-Martínez, F. de Paula Gutiérrez, J. S. Usma, S. E. Muñoz Torres y A. I. Sanabria Ochoa (Eds.). I. Catálogo de los recursos pesqueros continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia.

Ramírez-Gil, H. y R. E. Ajiaco Martínez. (2011). Zungaro zungaro (Siluriformes, Pimelodidae). Capítulo 7. Pp. 537-541. En: Mojica, J. I.; J. S. Usma; R.Álvarez-León y C. A. Lasso (Eds). 2012. Libro rojo de peces dulceacuícolas de Colombia 2012. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF Colombia y Universidad de Manizales. Bogotá, D. C., Colombia, 319 pp.

Restrepo, D. 2010. Biología reproductiva de las especies ícticas más importantes para las pesquerías artesanales del área Tasajera-Santa Marta, (Magdalena, Colombia) entre febrero y octubre (2009). Tesis Biología Marina, Universidad de Bogotá Jorge Tadeo Lozano, Bogotá.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can., 382 p.

Solano, D., Guevara, F. S., & Nieto, C. O. 2013. Crecimiento y reproducción de la mojarra amarilla (*Caquetaia kraussii* Steindachner, 1878) en el embalse de Urrá, Colombia. Revista MVZ Córdoba, 18(2), 3525-3533.

Tresierra, A.E. y Culquichicón, Z.G. 1993. Biología pesquera. Trujillo, Perú: Concytec, 432 p. Usma, S. y Morales-Betancourt. M. (2010). Brycon amazonicus: Characidae. Capítulo 7. Pp. 187-188. En: Lasso, C. A., E. Agudelo Córdoba, L. F. Jiménez-Segura, H. Ramírez-Gil, M. Morales-

Betancourt, R. E. Ajiaco-Martínez, F. de Paula Gutiérrez, J. S. Usma, S. E. Muñoz Torres y A. I. Sanabria Ochoa (Eds.). I. Catálogo de los recursos pesqueros continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). Bogota, D. C., Colombia.

Valderrama, M. y D. Solano. 2004. Estado de la población de bocachico, Prochilodus magdalenae (Pisces: Characiformes), y su manejo en la cuenca del rio Sinú, Colombia. Dahlia 7: 3-12

Valderrama, M., L. F. Jiménez-Segura, S. López-Casas, T. S. Rivas, C. E. Rincón, S. Nieto-Torres, G. González-Cañón, I. Galvis-Galindo, S. Hernández y F. Salas. 2011. Prochilodus magdalenae (Characiformes, Prochilodontidae). Capítulo 7. Pp. 305-311. En: Lasso, C. A., E. Agudelo Córdoba, L. F. JiménezSegura, H. Ramírez-Gil, M. MoralesBetancourt, R. E. Ajiaco-Martínez, F. de P. Gutiérrez, J. S. Usma Oviedo, S. E. Muñoz Torres, A. I. Sanabria Ochoa (Eds.) I. Catálogo de los Recursos Pesqueros Continentales de Colombia. Serie Editorial Recursos Hidrobiológicos y Pesqueros continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia, 715 pp.

Zapata, L.A. y Castellanos-Galindo, G.A., 2017. Cynoscion phoxocephalus. 261-264 pp. En: Chasqui V., L., A. Polanco F., A. Acero P., P.A. Mejía-Falla, A. Navia, L.A. Zapata y J.P. Caldas. (Eds.). 2017. Libro rojo de peces marinos de Colombia. Instituto de Investigaciones Marinas y Costeras Invemar, Ministerio de Ambiente y Desarrollo Sostenible. Serie de Publicaciones Generales de INVEMAR # 93. Santa Marta, Colombia. 552 p.

Zuluaga-Gómez, A., T. Giarrizzo, M. Andrade and A. Arango-Rojas, 2014. Length-weight relationships of 33 selected fish species from the Cauca River Basin, trans-Andean region, Colombia. J. Appl. Ichthyol. 30:1077-1080.

Anexo 1. Formulario de frecuencia de longitudes

											AF	SLE,	Y/O	MET	ODC) DE	PES	CA													
Red de enmalle () Palangre / Espinel / Calandrio ()					Línea de mano ()					Atarr	raya ()		Chinchorro / Chinchorra ()																		
Fija	Ronza	Zangarreo	Camaronera	Método		iperfici	е		Fo			Méto	do E	ija	Correteo	о С	ometa	Tan	naño de r	nalla (pulgadas)	Camar	onero V	elao	Jala	ala TM copo (Pulgadas)			;)			
Boliche Langostera Lanceo Boquera Tipo-Calibre							Tipo	-Calibre							Red de cerco (Ruche)																
TM (Pulgadas) Mín Máx			M	Mínimo Máximo		Mínimo Máximo				Long. (m) TM copo (Pulg) Cam Velao Jal			al																		
Chan	ga ()	ТМ сор	o (Pulgadas)	Nasa ()		Peces		Lango	sta	Jai	iba	Maru	icha ()	Có	ngolo () l	lecha ()	Reco	lección manual	/Buceo	Piangua	Cara	Ostra	Chip	oi Lar	ngosta	Calai	mar	Mis	xto
	INFORMACI Ó N DE LAS ESPECIES DESEMBARCADAS																														
Tipo Longitud est á nd									PECE	las especies dulceacufcolas, longitud total para especies marinas y longitud horquilla para las fuertemente ahorquilladas :S → LT: Longitud Total, LE: Longitud Estándar, LH: Longitud Horquilla, LD: Longitud Colsco, Itlud Cola → JAIBA → ABEL; Ancho base espinas laterales PIANIGUA → L: Longitud Concha CARACOL → Lcp; Longitud Cue								rpo													
																														-	+

Anexo 2. Formulario de información biológica

	IDE	NTIFIC	CACIÓN	DEL R	EGISTE	RO								
N° Registro (1)	Fecha (2)	dd	mmm	aaaa	Nomb	re de col	ector (3	3)						
Municipio (4) Sitio de	e desemba	arco (5)			Zona	de pesca	a (6)							
ARTE Y/ O MÉTODO DE PESCA														
Red de enmalle ()	alangre/ Espi	inel / Calan	drio()		Chinchorr	o()		Congo	lo ()					
Fija Ronza Zang Cam TM (pulg.): T	ipo y calibre	de anzuelo:	Min	Máx	Camaron.	Jala	Velao	Red de	e cerco o ru	uche ()				
Bol Lang Lanc Boq Min Maix L	ínea de mano	o(): Fija	Corr	Com	ТМ соро	(pulg.):		ТМ со	po (pulg.):					
Changa () TM (pulg.) copo: T	ipo y calibre	de anzuelo:	Mín	Máx	N asa o tra	mpa ():		Flecha	():					
Atarraya () TM (pulg.) :	uceo o recole	ecci ó n manu	ual ()		Otro ():									
INF	ORMAC	LOSINDIVIDUOS												
E specie	Lt	Le	Lh	Pcm	Pt	Pev	Sexo	Eg	Pg	T.C	C.C			
Todasi	as longitu	udes en d	cm con p	recisi ó n	al mil í r	netro y lo	os peso	seng	ramos					
Lt: Longitud total Le Longitud eståndar Lt: Longitud horquilla Pcm: Perimetro corporal måximo Pt: Peso total Pex- Peso tetal Pex- Peso evisserado Sexo M.: Macho H.: Hembra I nd: Indefinido	o Indeten Pg: Peso T.C: Tipo incidenta C.C: cate	minado) de la g ó nac o de captura II. descarte)	(escribir I , I da a (Objetivo, rcial (granda			Pcm &		Le						

Página 1 de 1

GESTIÓN DE INSPECCIÓN Y VIGILANCIA

Código: FT-IV-037

Versión: 1

FORMULARIO INFORMACIÓN BIOLÓGICA PARA LANGOSTA - SEPEC

Vigencia desde: 06/07/2020

IDENTIFICACI Ó N DEL REGISTRO													
N° Registro (1)	Fecha (2)	dd m	mm aaa	aa N	ombre c	le colect	or (3)						
Municipio (4)	Sitio de	desemb	oarco (5)		Zc	na de p	esca (6)						
			/ O M É 7	rodo i	DE PES	CA							
Red de enmalle langostera ()	Buceo Refuç Casita	ios artifi	iciales (as ()) Lla	ntas()	N	asa ()						
Otro arte () Cu á l:	N FORM A	CI Ó NI D	101 6 0		FLOCI	NDIVI	DIIOC						
Especie Especie		Lct	Lc	Ab	Pt	Pc	Pre	Sexo	H uevos	M. esperm			
Lt: Longitud total Lct: Longitud cefalot ó rax Lc: Longitud cefalot ó rax Lc: Longitud cola Pc: Peso de la cola Ab: Ancho del Abdomen. Pt: Peso total Pre: Premuda Sexo M: Macho H: Hembra In Todas las medidas en centímetros con p	nd: I ndetermin precisi ó n al m		/ los pesas	en gramo	XS.		Lcl —	Lt	-Let -				

Página 1 de 1

GESTIÓN DE INSPECCIÓN Y VIGILANCIA

Código: FT-IV-038

Versión: 1

FORMULARIO INFORMACIÓN BIOLÓGICA PARA JAIBAS - SEPEC Vigencia desde: 06/07/2020

	ID	ENTIF	TCACI Ó N	DEL REGISTR	Ю.								
N Registro (1) Fecha (2) M ombre de colector (3)													
Municipio (4)		io de de	esembarco	(5)	Zona de	e pesca (6)							
	F	ARTE Y	7 O M É TC	DO DE PESCA									
Nasa ()		Aros (Otro a Cu á l:								
	INFORMA	CI ó n i	BIOL Ó GI	CA DE LOSIN	DIVIDU	OS							
Especie			Lca	ABEL	Pt	Sexo	Eg						
Madurez machos: I: Juvenil: Abdomen en forma "T" invertida y pegado al cefalot ó rax 2: Adulto: Abdomen en forma T invertida y libre de cefalot ó rax.	200	NACH!	D MADI	irez hembra: maduro nadurando JRO maduro • IV: ovado.		EMBRA M	ADURA						
Lca: Longitud del caparaz ó n ABEL: Ancho de la base entr laterales del caparaz ón (en m PI: Peso total en gramos Sexo M: Macho H: H embra Eg: Estado gonadal	e las espinas		-ABEL-	3			Lca						

GESTIÓN DE INSPECCIÓN Y VIGILANCIA

Código: FT-IV-039

Versión: 1

FORMULARIO INFORMACIÓN BIOLÓGICA PARA CAMARONES - SEPEC

Vigencia desde: 06/07/2020

IDENTIFICACI Ó N DEL REGISTRO													
N° Registro (1) Fecha (2) aaaa Nombre de colector (3)													
Municipio (4) Sitio de desembarco (5) Zona de pesca (6)													
ARTE Y/ O MÉTODO DE PESCA Atarraya () Red de enmalle () Chinchorro () Tamaño de malla (pulg): Tamaño demalla (pulg) Tamaño demalla (pulg): Otro arte () Tamaño de malla del copo (pulg): Nasa () Cuái: IN FORMACIÓN BIOLÓGICA DE LOSIN DIVIDUOS													
E annula	INFORMACI O N							C					
Especie		Lt	Lcft	Lc	Pt	Pc	Pre	Sexo	Eg				
Lt. Langitud total													
Lt: Longitud total. Lcft: Longitud cefalot ó rax Lc: Longitud cola Pt: Peso total Pt: Peso total Pre: premuda Sexo: M: Macho H: Hembra Eg: Estado gonadal Machos Mad: Maduro, Inm: Inmad. Hembras I, II, III, IV, V, Ind: indete T odas las medidas mm y el peso en g	erminado					— Left	Lt C	Lc-	A Company				